The Times Australia
Health

.

How doctors use light to diagnose disease

  • Written by Matthew Griffith, Associate Professor and ARC Future Fellow and Director, UniSA Microscopy and Microanalysis Facilities, University of South Australia



You’re not feeling well. You’ve had a pounding headache all week, dizzy spells and have vomited up your past few meals.

You visit your GP to get some answers and sit while they shine a light in your eyes, order a blood test and request some medical imaging.

Everything your GP just did relies on light. These are just some of the optical technologies that have had an enormous impact in how we diagnose disease.

1. On-the-spot tests

Point-of-care diagnostics allow doctors to test patients on the spot and get answers in minutes, rather than sending samples to a lab for analysis.

The “flashlight” your GP uses to view the inside of your eye (known as an ophthalmoscope[2]) is a great example. This allows doctors to detect abnormal blood flow in the eye, deformations of the cornea (the outermost clear layer of the eye), or swollen optical discs (a round section at the back of the eye where the nerve link to the brain begins). Swollen discs are a sign of elevated pressure inside your head (or in the worst case, a brain tumour) that could be causing your headaches[3].

The invention of lasers and LEDs[4] has enabled many other miniaturised technologies to be provided at the bedside or clinic rather than in the lab.

Pulse oximetry[5] is a famous example, where a clip attached to your finger reports how well your blood is oxygenated. It does this by measuring[6] the different responses of oxygenated and de-oxygenated blood to different colours of light.

Pulse oximetry is used at hospitals (and sometimes at home[7]) to monitor your respiratory and heart health. In hospitals, it is also a valuable tool for detecting heart defects in babies[8].

Pulse oximeter on finger of hospital patient, person holding patient's hand
See that clip on the patient’s finger? That’s a pulse oximeter, which relies on light to monitor respiratory and heart health. CGN089/Shutterstock[9]

2. Looking at molecules

Now, back to that blood test. Analysing a small amount of your blood can diagnose many different diseases[10].

A machine called an automated “full blood count analyser” tests for general markers of your health. This machine directs focused beams of light through blood samples held in small glass tubes. It counts the number of blood cells, determines their specific type, and reports the level of haemoglobin (the protein in red blood cells that distributes oxygen around your body). In minutes, this machine can provide a snapshot[11] of your overall health.

For more specific disease markers, blood serum is separated from the heavier cells by spinning in a rotating instrument called a centrifuge. The serum is then exposed to special chemical stains and enzyme assays that change colour depending on whether specific molecules, which may be the sign of a disease, are present.

These colour changes can’t be detected with the naked eye. However, a light beam from an instrument called a spectrometer[12] can detect tiny amounts of these substances in the blood and determine if the biomarkers for diseases are present, and at what levels.

Gloved hand holding tube containing blood sample, more tubes in rack in background Light shines through the blood sample and tells us whether biomarkers for disease are present. angellodeco/Shutterstock[13]

3. Medical imaging

Let’s re-visit those medical images your GP ordered. The development of fibre-optic technology, made famous for transforming high-speed digital communications (such as the NBN), allows light to get inside the body. The result? High-resolution optical imaging.

A common example is an endoscope[14], where fibres with a tiny camera on the end are inserted into the body’s natural openings (such as your mouth or anus) to examine your gut or respiratory tracts.

Surgeons can insert the same technology through tiny cuts to view the inside of the body on a video screen during laparoscopic surgery[15] (also known as keyhole surgery) to diagnose and treat disease.

Endoscope tube Doctors can insert this flexible fibre-optic tube with a camera on the end into your body. Eduard Valentinov/Shutterstock[16]

How about the future?

Progress in nanotechnology and a better understanding of the interactions of light with our tissues are leading to new light-based tools to help diagnose disease. These include:

  • nanomaterials[17] (materials on an extremely small scale, many thousands of times smaller than the width of a human hair). These are being used in next-generation sensors and new diagnostic tests

  • wearable optical biosensors[18] the size of your fingernail can be included in devices such as watches, contact lenses or finger wraps. These devices allow non-invasive measurements of sweat, tears and saliva, in real time

  • AI tools to analyse how blood serum scatters infrared light. This has allowed researchers to build a comprehensive database[19] of scatter patterns to detect any cancer[20]

  • a type of non-invasive imaging called optical coherence tomography[21] for more detailed imaging of the eye, heart and skin

  • fibre optic technology to deliver a tiny microscope into the body on the tip of a needle[22].

So the next time you’re at the GP and they perform (or order) some tests, chances are that at least one of those tests depend on light to help diagnose disease.

References

  1. ^ in the series (theconversation.com)
  2. ^ ophthalmoscope (medlineplus.gov)
  3. ^ causing your headaches (www.hopkinsmedicine.org)
  4. ^ lasers and LEDs (openmedscience.com)
  5. ^ Pulse oximetry (theconversation.com)
  6. ^ measuring (www.howequipmentworks.com)
  7. ^ sometimes at home (theconversation.com)
  8. ^ heart defects in babies (www.thelancet.com)
  9. ^ CGN089/Shutterstock (www.shutterstock.com)
  10. ^ many different diseases (theconversation.com)
  11. ^ snapshot (www.nuffieldhealth.com)
  12. ^ spectrometer (www.ncbi.nlm.nih.gov)
  13. ^ angellodeco/Shutterstock (www.shutterstock.com)
  14. ^ endoscope (www.medicalnewstoday.com)
  15. ^ laparoscopic surgery (www.ncbi.nlm.nih.gov)
  16. ^ Eduard Valentinov/Shutterstock (www.shutterstock.com)
  17. ^ nanomaterials (onlinelibrary.wiley.com)
  18. ^ wearable optical biosensors (www.nature.com)
  19. ^ comprehensive database (www.advancedsciencenews.com)
  20. ^ any cancer (onlinelibrary.wiley.com)
  21. ^ optical coherence tomography (www.ncbi.nlm.nih.gov)
  22. ^ tip of a needle (www.uwa.edu.au)

Read more https://theconversation.com/from-eye-exams-to-blood-tests-and-surgery-how-doctors-use-light-to-diagnose-disease-231379

Times Magazine

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Times Features

What Endo Took and What It Gave Me

From pain to purpose: how one woman turned endometriosis into a movement After years of misdiagnosis, hormone chaos, and major surgery, Jo Barry was done being dismissed. What beg...

Why Parents Must Break the Silence on Money and Start Teaching Financial Skills at Home

Australia’s financial literacy rates are in decline, and our kids are paying the price. Certified Money Coach and Financial Educator Sandra McGuire, who has over 20 years’ exp...

Australia’s Grill’d Transforms Operations with Qlik

Boosting Burgers and Business Clean, connected data powers real-time insights, smarter staffing, and standout customer experiences Sydney, Australia, 14 July 2025 – Qlik®, a g...

Tricia Paoluccio designer to the stars

The Case for Nuturing Creativity in the Classroom, and in our Lives I am an actress and an artist who has had the privilege of sharing my work across many countries, touring my ...

Duke of Dural to Get Rooftop Bar as New Owners Invest in Venue Upgrade

The Duke of Dural, in Sydney’s north-west, is set for a major uplift under new ownership, following its acquisition by hospitality group Good Beer Company this week. Led by resp...

Prefab’s Second Life: Why Australia’s Backyard Boom Needs a Circular Makeover

The humble granny flat is being reimagined not just as a fix for housing shortages, but as a cornerstone of circular, factory-built architecture. But are our systems ready to s...