The Times Australia
The Times World News

.

A 'next-generation' gamma-ray observatory is underway to probe the extreme Universe

  • Written by Gavin Rowell, Professor in High Energy Astrophyics, University of Adelaide
A 'next-generation' gamma-ray observatory is underway to probe the extreme Universe

Long gone are the days when astronomers only studied the skies with simple optical telescopes. Today, unveiling the mysteries of the Universe involves ever-larger and more complex facilities that detect things like gravitational waves and different forms of electromagnetic radiation – the spectrum of energy that includes visible light and X-rays.

One particularly specialised branch of astronomy is gamma-ray astronomy. It does what is says on the tin, searching for gamma rays[1], which are the most energetic photons (light particles) on the electromagnetic spectrum. In fact, they are millions of times more energetic[2] than the light we can see.

In astronomy, gamma rays are produced by some of the hottest, most energetic events in the universe, such as star explosions and black holes violently “feeding” on surrounding matter[3]. While gamma rays are now linked to dozens of different types of sources, in many cases we still don’t know conclusively what kinds of energetic particles are creating these rays.

Excitingly, gamma-ray astronomy is due to get a massive leg up with a new facility. Once the globally distributed Cherenkov Telescope Array[4] (CTA) is complete, it will view the gamma-ray sky with ten times more sensitivity than what’s currently possible.

With more than 60 telescopes, the CTA is expected to provide deep insight into the nature of dark matter – an invisible, hypothetical type of matter making up about 85% of the mass of the Universe. The array could also help solve one of the longest-running mysteries in astronomy: where cosmic ray particles (energetic nuclei and electrons in our galaxy and beyond) come from. Gamma rays are linked to these particles, providing a means to trace them.

Read more: Why do astronomers believe in dark matter?[5]

Flashes from outer space

Gamma-ray astronomy was born in the early 1960s[6] as space-based satellites were developed to look for energetic radiation from outer space.

NASA’s Fermi mission, launched in 2008 to a low-Earth orbit, has so far catalogued several thousand gamma-ray sources[7]. The Fermi spacecraft continues to provide 24-hour live coverage of the sky, measuring gamma rays with energies reaching several 1,000 giga-electron volts in energy. That’s about one trillion times the energy of visible light.

To study gamma rays with even higher energies, we need to use ground-based methods. Although Earth’s atmosphere shields us against radiation from outer space, we can still detect the secondary effects of this shielding on the ground.

That’s because when a gamma ray interacts with Earth’s atmosphere, it sparks an electromagnetic cascade or “air shower” of more than a billion secondary particles. These particles are mostly electrons and their anti-matter partners, called positrons. These air showers contribute about 30-50% of the natural radiation we experience in our lives.

A chart illustrating how gamma rays produce Cherenkov light when hitting the atmosphere
CTA won’t be detecting gamma rays directly. It will pick up Cherenkov light, the blue flash of light resulting from gamma rays interacting with Earth’s atmosphere. CTAO/ESO, CC BY[8][9]

Making the invisible visible

While nothing can go faster than the speed of light in a vacuum, charged particles such as electrons and positrons (anti-electrons) can actually move faster than light when moving through air.

When this happens, a shockwave is created as a flash of blue and ultraviolet light. This flash, called Cherenkov radiation, is named after Soviet physicist Pavel Cherenkov who first detected the phenomenon in 1934 (and received the 1958 Nobel Prize in Physics[10] for it alongside two colleagues). The blue glow of Cherenkov radiation can be seen in water cooling ponds surrounding nuclear power reactors.

A concrete room with a circular hole in the middle surrounded with railings, with blue glowing water inside The blue glow seen in the water cooling the core of a nuclear reactor is known as Cherenkov radiation. Parilov/Shutterstock

At ground level, telescopes with large mirrors and sensitive cameras can detect the Cherenkov light produced by a gamma ray striking our atmosphere. These cameras need just about ten nanoseconds to capture a Cherenkov flash against the bright background of starlight and moonlight.

The first Cherenkov telescopes were developed in the 1960s. After many variants, it was the Whipple Telescope in the United States that in 1989 discovered gamma-ray photons[11] coming from the Crab Nebula.

This was the first time gamma rays with energies of more than 1,000 giga-electron volts (or 1 tera-electron-volt, TeV) were detected. Thus, tera-electron-volt gamma-ray astronomy was born.

Searching for the extremes

Today, all three of the world’s best TeV gamma-ray facilities – HESS[12] in Namibia, MAGIC[13] in La Palma, Spain and VERITAS[14] in Arizona – have discovered more than 200 TeV gamma-ray sources[15]. These powerful rays are linked to cosmic regions of particle acceleration, such as pulsars, supernova remnants, massive star clusters, and supermassive black holes in the Milky Way and other galaxies.

HESS has shown our Milky Way galaxy is rich in TeV gamma-ray “light”, including in the centre of the galaxy[16].

TeV gamma-rays are also seen from mysterious gamma-ray bursts[17] and other fleeting, transient events. These are now informing our understanding of the extreme conditions in which gamma rays are created.

The next-generation CTA will use the lessons learnt from HESS, VERITAS and MAGIC, by extending the number of telescopes deployed on the ground to over 60 telescopes. CTA will also use a combination of three different telescope sizes optimised for three gamma-ray energy bands, providing unprecedented performance and “sharpness”.

It will have arrays at two sites on the ground: one in Paranal, Chile (51 telescopes) in the Southern Hemisphere, and one in La Palma (13 telescopes) in the Northern Hemisphere.

CTA has attracted membership from more than 1,000 scientists, including Australian scientists from seven universities. It’s progressing well, with the first northern telescope already detecting gamma rays from the Crab Nebula and several gamma-ray flares from active galaxies powered by supermassive black holes[18].

Within a few years we expect to see the first southern telescopes also detecting gamma rays, yielding many more discoveries. With CTA, we will have new insights into where extreme particle acceleration is taking place in our Milky Way.

Read more: New era of astronomy uncovers clues about the cosmos[19]

References

  1. ^ gamma rays (www.space.com)
  2. ^ millions of times more energetic (www.britannica.com)
  3. ^ black holes violently “feeding” on surrounding matter (theconversation.com)
  4. ^ Cherenkov Telescope Array (www.cta-observatory.org)
  5. ^ Why do astronomers believe in dark matter? (theconversation.com)
  6. ^ in the early 1960s (imagine.gsfc.nasa.gov)
  7. ^ several thousand gamma-ray sources (fermi.gsfc.nasa.gov)
  8. ^ CTAO/ESO (www.eso.org)
  9. ^ CC BY (creativecommons.org)
  10. ^ 1958 Nobel Prize in Physics (www.nobelprize.org)
  11. ^ 1989 discovered gamma-ray photons (ui.adsabs.harvard.edu)
  12. ^ HESS (www.mpi-hd.mpg.de)
  13. ^ MAGIC (www.mpp.mpg.de)
  14. ^ VERITAS (veritas.sao.arizona.edu)
  15. ^ gamma-ray sources (tevcat.uchicago.edu)
  16. ^ in the centre of the galaxy (theconversation.com)
  17. ^ mysterious gamma-ray bursts (theconversation.com)
  18. ^ active galaxies powered by supermassive black holes (astronomerstelegram.org)
  19. ^ New era of astronomy uncovers clues about the cosmos (theconversation.com)

Read more https://theconversation.com/a-next-generation-gamma-ray-observatory-is-underway-to-probe-the-extreme-universe-191772

Times Magazine

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

The Times Features

From Farms to Festivals: How Regional NSW Is Repurposing Shipping Containers

Regional NSW communities are repurposing containers for farms, tourism, and events Farmers and small businesses use them as cost-effective, flexible infrastructure Festivals ...

What a Mobile Speech Pathologist Really Does for Late Talkers

As a parent, it’s natural to keep a close eye on your child’s development. When your toddler isn’t using as many words as their peers, the internet can feel like a rabbit hole ...

Benefits of Tree Pruning for a Thriving Australian Garden

Tree pruning is an essential aspect of garden maintenance that often doesn't get the attention it deserves. It's a practice that involves the selective removal of certain parts...

What is psychosocial therapy? And why is the government thinking about adding it to Medicare for kids?

The government is considering new, bulk-billed health checks for three-year-olds, to pick up developmental concerns and refer kids that might need additional support. The de...

Detect Hidden Water Leaks Fast: Don’t Ignore Hot Water System Leaks

Detecting water leaks early is crucial for preventing extensive damage to your home. Among the various parts of a home’s plumbing system, hot water systems are particularly suscept...

Why do hamstring injuries happen so often and how can they be prevented?

In a recent clash against the Melbourne Storm, the Brisbane Broncos endured a nightmare rarely seen in professional sport — three players tore their hamstrings[1] in a single g...