The Times Australia
Google AI
The Times World News

.

For the first time, astronomers have linked a mysterious fast radio burst with gravitational waves

  • Written by Clancy William James, Senior Lecturer (astronomy and astroparticle physics), Curtin University
For the first time, astronomers have linked a mysterious fast radio burst with gravitational waves

We have just published evidence[1] in Nature Astronomy for what might be producing mysterious bursts of radio waves coming from distant galaxies, known as fast radio bursts[2] or FRBs.

Two colliding neutron stars[3] – each the super-dense core of an exploded star – produced a burst of gravitational waves when they merged into a “supramassive” neutron star[4]. We found that two and a half hours later they produced an FRB when the neutron star collapsed into a black hole.

Or so we think. The key piece of evidence that would confirm or refute our theory – an optical or gamma-ray flash coming from the direction of the fast radio burst – vanished almost four years ago. In a few months, we might get another chance to find out if we are correct.

Brief and powerful

FRBs are incredibly powerful pulses of radio waves from space lasting about a thousandth of a second. Using data from a radio telescope in Australia, the Australian Square Kilometre Array Pathfinder (ASKAP[5]), astronomers have found[6] that most FRBs come from galaxies so distant, light takes billions of years to reach us[7]. But what produces these radio wave bursts has been puzzling astronomers since an initial detection[8] in 2007.

The best clue comes from an object in our galaxy known as SGR 1935+2154. It’s a magnetar[9], which is a neutron star with magnetic fields about a trillion times stronger than a fridge magnet. On April 28 2020, it produced a violent burst of radio waves[10] – similar to an FRB, although less powerful.

Read more: A brief history: what we know so far about fast radio bursts across the universe[11]

Astronomers have long predicted that two neutron stars – a binary – merging to produce a black hole[12] should also produce a burst of radio waves. The two neutron stars will be highly magnetic, and black holes cannot have magnetic fields. The idea[13] is the sudden vanishing of magnetic fields when the neutron stars merge and collapse to a black hole produces a fast radio burst. Changing magnetic fields produce electric fields – it’s how most power stations produce electricity. And the huge change in magnetic fields at the time of collapse could produce the intense electromagnetic fields of an FRB.

A black field with two illustrations of galaxies in the foreground, and a yellow beam connecting them
Artist’s impression of a fast radio burst traveling through space and reaching Earth. ESO/M. Kornmesser, CC BY[14][15]

The search for the smoking gun

To test this idea, Alexandra Moroianu, a masters student at the University of Western Australia, looked for merging neutron stars detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO[16]) in the US. The gravitational waves LIGO searches for are ripples in spacetime, produced by the collisions of two massive objects, such as neutron stars.

LIGO has found two binary neutron star mergers. Crucially, the second, known as GW190425[17], occurred when a new FRB-hunting telescope called CHIME[18] was also operational. However, being new, it took CHIME two years to release its first batch of data[19]. When it did so, Moroianu quickly identified a fast radio burst called FRB 20190425A[20] which occurred only two and a half hours after GW190425.

Exciting as this was, there was a problem – only one of LIGO’s two detectors was working at the time, making it very uncertain[21] where exactly GW190425 had come from. In fact, there was a 5% chance this could just be a coincidence.

Worse, the Fermi[22] satellite, which could have detected gamma rays from the merger – the “smoking gun” confirming the origin of GW190425 – was blocked by Earth[23] at the time.

A nighttime view of white curved pipes arranged in a grid pattern CHIME, the Canadian Hydrogen Intensity Mapping Experiment, has turned out to be uniquely suited to detecting FRBs. Andre Renard/Dunlap Institute/CHIME Collaboration

Unlikely to be a coincidence

However, the critical clue was that FRBs trace the total amount of gas they have passed through. We know this because high-frequency radio waves travel faster through the gas than low-frequency waves, so the time difference between them tells us the amount of gas.

Because we know the average gas density of the universe[24], we can relate this gas content to distance, which is known as the Macquart relation[25]. And the distance travelled by FRB 20190425A was a near-perfect match for the distance to GW190425. Bingo!

So have we discovered the source of all FRBs? No. There are not enough merging neutron stars in the Universe to explain the number of FRBs – some must still come from magnetars, like SGR 1935+2154 did.

And even with all the evidence, there’s still a one in 200 chance this could all be a giant coincidence. However, LIGO and two other gravitational wave detectors, Virgo[26] and KAGRA[27], will turn back on[28] in May this year, and be more sensitive than ever, while CHIME and other radio telescopes[29] are ready to immediately detect any FRBs from neutron star mergers.

In a few months, we may find out if we’ve made a key breakthrough – or if it was just a flash in the pan.

Clancy W. James would like to acknowledge Alexandra Moroianu, the lead author of the study; his co-authors, Linqing Wen, Fiona Panther, Manoj Kovalem (University of Western Australia), Bing Zhang and Shunke Ai (University of Nevada); and his late mentor, Jean-Pierre Macquart, who experimentally verified the gas-distance relation, which is now named after him.

References

  1. ^ just published evidence (www.nature.com)
  2. ^ fast radio bursts (theconversation.com)
  3. ^ neutron stars (theconversation.com)
  4. ^ supramassive” neutron star (www.ozgrav.org)
  5. ^ ASKAP (www.atnf.csiro.au)
  6. ^ astronomers have found (www.science.org)
  7. ^ billions of years to reach us (theconversation.com)
  8. ^ an initial detection (www.science.org)
  9. ^ magnetar (earthsky.org)
  10. ^ violent burst of radio waves (www.nature.com)
  11. ^ A brief history: what we know so far about fast radio bursts across the universe (theconversation.com)
  12. ^ black hole (theconversation.com)
  13. ^ The idea (www.aanda.org)
  14. ^ ESO/M. Kornmesser (www.eso.org)
  15. ^ CC BY (creativecommons.org)
  16. ^ LIGO (www.ligo.org)
  17. ^ GW190425 (www.ligo.org)
  18. ^ CHIME (chime-experiment.ca)
  19. ^ to release its first batch of data (theconversation.com)
  20. ^ FRB 20190425A (www.chime-frb.ca)
  21. ^ very uncertain (theconversation.com)
  22. ^ Fermi (fermi.gsfc.nasa.gov)
  23. ^ blocked by Earth (link.springer.com)
  24. ^ average gas density of the universe (theconversation.com)
  25. ^ Macquart relation (www.nature.com)
  26. ^ Virgo (www.virgo-gw.eu)
  27. ^ KAGRA (gwcenter.icrr.u-tokyo.ac.jp)
  28. ^ turn back on (www.ligo.caltech.edu)
  29. ^ other radio telescopes (www.mwatelescope.org)

Read more https://theconversation.com/for-the-first-time-astronomers-have-linked-a-mysterious-fast-radio-burst-with-gravitational-waves-202341

Times Magazine

Shark launches SteamSpot - the shortcut for everyday floor mess

Shark introduces the Shark SteamSpot Steam Mop, a lightweight steam mop designed to make everyda...

Game Together, Stay Together: Logitech G Reveals Gaming Couples Enjoy Higher Relationship Satisfaction

With Valentine’s Day right around the corner, many lovebirds across Australia are planning for the m...

AI threatens to eat business software – and it could change the way we work

In recent weeks, a range of large “software-as-a-service” companies, including Salesforce[1], Se...

Worried AI means you won’t get a job when you graduate? Here’s what the research says

The head of the International Monetary Fund, Kristalina Georgieva, has warned[1] young people ...

How Managed IT Support Improves Security, Uptime, And Productivity

Managed IT support is a comprehensive, subscription model approach to running and protecting your ...

AI is failing ‘Humanity’s Last Exam’. So what does that mean for machine intelligence?

How do you translate ancient Palmyrene script from a Roman tombstone? How many paired tendons ...

The Times Features

Marketers: Forget the Black Box. If You Aren't Moving the Needle, What Are You Doing?

Two years ago, I entered the digital marketing space with the mindset of an engineering student ...

Extreme weather growing threat to Australian businesses in storm and fire season

  Australian small businesses are being hit harder than ever by costly disruptions...

Join Macca’s in supporting Clean Up Australia Day

McDonald’s Australia is once again rolling up its sleeves for Clean Up Australia Day, marking 36...

IFTAR Turns Up The Heat With The Return of Ramadan Nights From 18 February

Iftar returns to IFTAR, with the Western Sydney favourite opening after dark for Ramadan  IFTA...

What causes depression? What we know, don’t know and suspect

Depression is a complex and deeply personal experience. While almost everyone has periods of s...

5 Cool Ways to Transform Your Interior in 2026

We are at the end of the great Australian summer, and this is the perfect time to start thinking a...

What First-Time Buyers Must Know About Mortgages and Home Ownership

The reality is, owning a home isn’t for everyone. It’s a personal lifestyle decision rather than a...

SHOP 2026’s HOTTEST HOME TRENDS AT LOW PRICES WITH KMART’S FEBRUARY LIVING COLLECTION

Kmart’s fresh new February Living range brings affordable style to every room, showcasing an  insp...

Holafly report finds top global destinations for remote and hybrid workers

Data collected by Holafly found that 8 in 10 professionals plan to travel internationally in 202...