The Times Australia
Fisher and Paykel Appliances
The Times World News

.

NZ industry burns the equivalent of 108 litres of petrol every second – that has to reduce to meet our carbon targets

  • Written by Timothy Gordon Walmsley, Senior Lecturer in Process and Energy Engineering, University of Waikato
NZ industry burns the equivalent of 108 litres of petrol every second – that has to reduce to meet our carbon targets

New Zealand burns the equivalent of 108 litres of petrol every second in coal and natural gas to generate heat for industrial processes. This burning of fossil fuels for industrial heat generates 28%[1] of New Zealand’s energy-related emissions.

Industry needs vast quantities of heat for a wide range of activities, including to process staple foods, to manufacture materials for building homes, and to produce packaging for everyday goods.

But it’s very clear that to achieve a net-zero carbon economy by 2050, we need to ramp up the use of renewable energy technology to generate industrial heat, instead of burning fossil fuels.

The government is using a carrot-and-stick approach to drive the transition to low-carbon and renewable energy. The “stick” requires industry to phase out coal boilers[2] for low and medium temperature heat applications by 2037. New natural gas exploration has also effectively ended[3], which will lead to future decreases in gas supply.

The “carrot” is the Government Investment in Decarbonisation Initiatives[4] fund. The results so far are significant, with industry turning to tried and true solutions: energy efficiency gains, biomass boilers, electrode boilers and heat pumps, sometimes combined with electrical or thermal batteries.

These technologies are clean and green, but they are also scalable to industrial needs. Let’s have a look at what these different options are.

4 options for industry

The first option – increasing energy efficiency – is where all industrial businesses should start their decarbonisation journeys. It reduces the need to supply heat in the first place. Minimising heat demand also means replacement boilers can have smaller capacities, reducing investment costs.

The second option is to use biomass boilers. Over the past couple of years, biomass boilers have been rolled out to several large industrial sites.

These boilers burn biofuels, usually a byproduct of the wood processing sector such as sawdust, wood chips and wood pellets, to generate the required steam and hot water for a site. Fonterra, for example, is currently building a new 30-megawatt biomass boiler at its Waitoa site.

Read more: NZ farmers worry about 'carbon leakage' if they have to pay for emissions, but they could benefit from playing the long game[5]

Biomass boilers provide a like-for-like replacement for fossil fuel boilers. But their use is not straightforward. No one really knows what the future availability of low-cost biomass will be due to the rapid expansion of the market in recent years, uncertainty around biomass sources and increase in demand.

The third option is to use electrode boilers. These are cheap to install but they use electricity as the energy source. The cost of this heat is typically three times more expensive than from fossil fuels. Industry is also often exposed to the electricity spot market where price varies dramatically both daily and seasonally, which presents both a risk and opportunity.

Dairy manufacturer and supplier Open Country Dairy, aided by “smart control” technology from Simply Energy, recently installed an electrode boiler alongside its existing coal boiler. The electrode boiler turns off when the electricity price is high, shifting load to coal, and turns back on when the price is sufficiently low. This is a cost-effective solution but invariably an interim measure as coal phases out.

The fourth option – heat pumps – uses a different type of technology. On paper, industrial heat pumps have the potential to achieve over two to three times the performance levels of biomass or electrode boilers, although often at lower heating temperatures. Better performance means proportionately lower operating costs. Current heat pump technology can service heating up to about 90°C.

Meat processing sites like ANZCO and Silver Fern Farms, both near Christchurch, are using heat pumps to recover and upgrade waste heat from their chillers to generate the hot water they need. This is another smart way of using conventional technology.

Read more: Climate explained: could biofuels replace all fossil fuels in New Zealand?[6]

In the future, we need heat pumps to far exceed 90°C to increase their applicability to a wider range of industrial site. In Europe, many current technology demonstration units can now provide heating up to 150°C using an HFO refrigerant (synthetic fluorinated greenhouse gases) or CO₂.

HFO refrigerants were positioned as the answer to ozone-depleting gases but recent research expresses concerns about them degrading into “forever chemicals” with serious implications for human and environmental health[7]. The European Union now plans to rapidly phase out and ban their use by 2026.

MAN Energy Solutions, which has recently partnered with Fonterra, offers a CO₂ heat pump that can also generate hot water at 150°C at a heat-to-electricity-use performance ratio of nearly three. This means it only uses one third of the electricity to generate the same amount of heat as an electrode boiler.

These four options all have critical roles to play in decarbonising New Zealand industry. Different sites will demand different solutions that will often combine multiple approaches to achieve the most cost-efficient solution.

Need for local solutions

Traditionally, New Zealand has been an energy technology importer. However, high demand for cutting-edge boiler and heat pump technology in much larger markets in Europe and elsewhere could make it difficult for New Zealand businesses to access necessary plant and technical support without long wait times.

If we could develop and manufacture our own, we could provide customised solutions for New Zealand industry. Many of the associated “green” manufacturing jobs would also be located here at home.

Read more: Time to tap in to an underused energy source: wasted heat[8]

Decarbonising industrial heat presents a massive challenge but also an opportunity. The challenge is to make the energy transition quickly enough to limit climate change while keeping the energy costs sufficiently low to stay in business.

As we make this transition, we also need a paradigm shift in attitude and ambition towards research, development and manufacturing pathways for advanced technology to maximise the benefit to New Zealand Inc.

Read more https://theconversation.com/nz-industry-burns-the-equivalent-of-108-litres-of-petrol-every-second-that-has-to-reduce-to-meet-our-carbon-targets-204525

Times Magazine

Australia’s electric vehicle surge — EVs and hybrids hit record levels

Australians are increasingly embracing electric and hybrid cars, with 2025 shaping up as the str...

Tim Ayres on the AI rollout’s looming ‘bumps and glitches’

The federal government released its National AI Strategy[1] this week, confirming it has dropped...

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

Mapping for Trucks: More Than Directions, It’s Optimisation

Daniel Antonello, General Manager Oceania, HERE Technologies At the end of June this year, Hampden ...

Can bigger-is-better ‘scaling laws’ keep AI improving forever? History says we can’t be too sure

OpenAI chief executive Sam Altman – perhaps the most prominent face of the artificial intellig...

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started hating on artifici...

The Times Features

The way Australia produces food is unique. Our updated dietary guidelines have to recognise this

You might know Australia’s dietary guidelines[1] from the famous infographics[2] showing the typ...

Why a Holiday or Short Break in the Noosa Region Is an Ideal Getaway

Few Australian destinations capture the imagination quite like Noosa. With its calm turquoise ba...

How Dynamic Pricing in Accommodation — From Caravan Parks to Hotels — Affects Holiday Affordability

Dynamic pricing has quietly become one of the most influential forces shaping the cost of an Aus...

The rise of chatbot therapists: Why AI cannot replace human care

Some are dubbing AI as the fourth industrial revolution, with the sweeping changes it is propellin...

Australians Can Now Experience The World of Wicked Across Universal Studios Singapore and Resorts World Sentosa

This holiday season, Resorts World Sentosa (RWS), in partnership with Universal Pictures, Sentosa ...

Mineral vs chemical sunscreens? Science shows the difference is smaller than you think

“Mineral-only” sunscreens are making huge inroads[1] into the sunscreen market, driven by fears of “...

Here’s what new debt-to-income home loan caps mean for banks and borrowers

For the first time ever, the Australian banking regulator has announced it will impose new debt-...

Why the Mortgage Industry Needs More Women (And What We're Actually Doing About It)

I've been in fintech and the mortgage industry for about a year and a half now. My background is i...

Inflation jumps in October, adding to pressure on government to make budget savings

Annual inflation rose[1] to a 16-month high of 3.8% in October, adding to pressure on the govern...