The Times Australia
The Times World News

.

We've detected a star barely hotter than a pizza oven – the coldest ever found to emit radio waves

  • Written by Kovi Rose, Astrophysics PhD Candidate, University of Sydney
We've detected a star barely hotter than a pizza oven – the coldest ever found to emit radio waves

We have identified the coldest star ever found to produce radio waves – a brown dwarf too small to be a regular star and too massive to be a planet.

Our findings, published today in the Astrophysical Journal Letters[1], detail the detection of pulsed radio emission from this star, called WISE J0623.

Despite being roughly the same size as Jupiter, this dwarf star has a magnetic field much more powerful than our Sun’s. It’s joining the ranks of just a small handful of known ultra-cool dwarfs that generate repeating radio bursts.

Making waves with radio stars

With over 100 billion stars in our Milky Way galaxy, it might surprise you astronomers have detected radio waves from fewer than 1,000 of them. One reason is because radio waves and optical light are generated by different physical processes.

Unlike the thermal (heat) radiation coming from the hot outer layer of a star, radio emission is the result of particles called electrons speeding up and interacting with magnetised gas around the star.

Because of this we can use the radio emission to learn about the atmospheres and magnetic fields of stars, which ultimately could tell us more about the potential for life to survive on any planets that orbit them.

Read more: The Webb telescope has released its very first exoplanet image – here's what we can learn from it[2]

Another factor is the sensitivity of radio telescopes which, historically, could only detect sources that were very bright.

Most of the detections of stars with radio telescopes over the past few decades have been flares from highly active stars or energetic bursts from the interaction of binary (two) star systems. But with the improved sensitivity and coverage of new radio telescopes, we can detect less luminous stars such as cool brown dwarfs[3].

Images of star, brown dwarfs and planets comparing their masses.
Mass comparison of stars, brown dwarfs and planets (not to scale). NASA/JPL-Caltech

WISE J0623 has a temperature of around 700 Kelvin. That’s equivalent to 420℃ or about the same temperature as a commercial pizza oven – pretty hot by human standards, but quite cold for a star.

These cool brown dwarfs can’t sustain the levels of atmospheric activity that generates radio emission in hotter stars, making stars like WISE J0623 harder for radio astronomers to find.

How did we find the coolest radio star?

This is where the new Australian SKA Pathfinder[4] radio telescope comes in. This is located at Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory in Western Australia, and has an array of 36 antennas, each 12 metres in diameter.

The telescope can see large regions of the sky in a single observation and has already surveyed nearly 90% of it. From this survey we have identified close to three million radio sources, most of which are active galactic nuclei[5] – black holes at the centres of distant galaxies.

So how do we tell which of these millions of sources are radio stars? One way is to look for something called “circularly polarised radio emission”.

Radio waves, like other electromagnetic radiation, oscillate as they move through space. Circular polarisation occurs when the electric field of the wave rotates in a spiralling or corkscrew motion as it propagates.

For our search we used the fact that the only astronomical objects known to emit a significant fraction of circularly polarised light are stars and pulsars[6] (rotating neutron stars).

By selecting only highly circularly polarised radio sources from an earlier survey of the sky[7], we found WISE J0623. You can see using the slider in the figure above that once you switch to polarised light, there is only one object visible.

What does this discovery mean?

Was the radio emission from this star some rare one-off event that happened during our 15 minute observation? Or could we detect it again?

Previous research[8] has shown that radio emission detected from other cool brown dwarfs was tied to their magnetic fields and generally repeated at the same rate as the star rotates.

To investigate this we did follow-up observations with CSIRO’s Australian Telescope Compact Array[9], and with the MeerKAT[10] telescope operated by the South African Radio Astronomy Observatory.

The bottom panel shows the brightness of polarised light over time. The top panel shows emission at different radio frequencies. Author Provided.

These new observations showed that every 1.9 hours there were two bright, circularly polarised bursts from WISE J0623 followed by a half an hour delay before the next pair of bursts.

WISE J0623 is the coolest brown dwarf detected via radio waves and is the first case of persistent radio pulsations. Using this same search method, we expect future surveys to detect even cooler brown dwarfs.

Studying these missing link dwarf stars will help improve our understanding of stellar evolution and how giant exoplanets (planets in other solar systems) develop magnetic fields.

We acknowledge the Wajarri Yamatji as the traditional owners of the Murchison Radio-astronomy Observatory site where Australian SKA Pathfinder is located, and the Gomeroi people as the traditional owners of the Australian Telescope Compact Array site.

References

  1. ^ Astrophysical Journal Letters (iopscience.iop.org)
  2. ^ The Webb telescope has released its very first exoplanet image – here's what we can learn from it (theconversation.com)
  3. ^ brown dwarfs (astronomy.swin.edu.au)
  4. ^ Australian SKA Pathfinder (www.csiro.au)
  5. ^ active galactic nuclei (theconversation.com)
  6. ^ pulsars (theconversation.com)
  7. ^ an earlier survey of the sky (theconversation.com)
  8. ^ Previous research (ui.adsabs.harvard.edu)
  9. ^ Australian Telescope Compact Array (www.csiro.au)
  10. ^ MeerKAT (www.sarao.ac.za)

Read more https://theconversation.com/weve-detected-a-star-barely-hotter-than-a-pizza-oven-the-coldest-ever-found-to-emit-radio-waves-207830

Times Magazine

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

From Beach Bops to Alpine Anthems: Your Sonos Survival Guide for a Long Weekend Escape

Alright, fellow adventurers and relaxation enthusiasts! So, you've packed your bags, charged your devices, and mentally prepared for that glorious King's Birthday long weekend. But hold on, are you really ready? Because a true long weekend warrior kn...

Effective Commercial Pest Control Solutions for a Safer Workplace

Keeping a workplace clean, safe, and free from pests is essential for maintaining productivity, protecting employee health, and upholding a company's reputation. Pests pose health risks, can cause structural damage, and can lead to serious legal an...

The Times Features

Exploring the Curriculum at a Modern Junior School in Melbourne

Key Highlights The curriculum at junior schools emphasises whole-person development, catering to children’s physical, emotional, and intellectual needs. It ensures early year...

Distressed by all the bad news? Here’s how to stay informed but still look after yourself

If you’re feeling like the news is particularly bad at the moment, you’re not alone. But many of us can’t look away – and don’t want to. Engaging with news can help us make ...

The Role of Your GP in Creating a Chronic Disease Management Plan That Works

Living with a long-term condition, whether that is diabetes, asthma, arthritis or heart disease, means making hundreds of small decisions every day. You plan your diet against m...

Troubleshooting Flickering Lights: A Comprehensive Guide for Homeowners

Image by rawpixel.com on Freepik Effectively addressing flickering lights in your home is more than just a matter of convenience; it's a pivotal aspect of both home safety and en...

My shins hurt after running. Could it be shin splints?

If you’ve started running for the first time, started again after a break, or your workout is more intense, you might have felt it. A dull, nagging ache down your shins after...

Metal Roof Replacement Cost Per Square Metre in 2025: A Comprehensive Guide for Australian Homeowners

In recent years, the trend of installing metal roofs has surged across Australia. With their reputation for being both robust and visually appealing, it's easy to understand thei...