The Times Australia
Google AI
The Times World News

.

Physics Nobel awarded to neural network pioneers who laid foundations for AI

  • Written by Aaron J. Snoswell, Research Fellow in AI Accountability, Queensland University of Technology
Infographic comparing natural and artificial neurons.

The 2024 Nobel Prize in Physics[1] has been awarded to scientists John Hopfield and Geoffrey Hinton “for foundational discoveries and inventions that enable machine learning with artificial neural networks”.

Inspired by ideas from physics and biology, Hopfield and Hinton developed computer systems that can memorise and learn from patterns in data. Despite never directly collaborating, they built on each other’s work to develop the foundations of the current boom in machine learning and artificial intelligence (AI).

What are neural networks? (And what do they have to do with physics?)

Artificial neural networks are behind much of the AI technology we use today.

In the same way your brain has neuronal cells linked by synapses, artificial neural networks have digital neurons connected in various configurations. Each individual neuron doesn’t do much. Instead, the magic lies in the pattern and strength of the connections between them.

Neurons in an artificial neural network are “activated” by input signals. These activations cascade from one neuron to the next in ways that can transform and process the input information. As a result, the network can carry out computational tasks such as classification, prediction and making decisions.

Infographic comparing natural and artificial neurons.
Johan Jarnestad / The Royal Swedish Academy of Sciences[2] Most of the history of machine learning has been about finding ever more sophisticated ways to form and update these connections between artificial neurons. While the foundational idea of linking together systems of nodes to store and process information came from biology, the mathematics used to form and update these links came from physics. Networks that can remember John Hopfield (born 1933) is a US theoretical physicist who made important contributions over his career in the field of biological physics. However, the Nobel Physics prize was for his work developing Hopfield networks[3] in 1982. Hopfield networks were one of the earliest kinds of artificial neural networks. Inspired by principles from neurobiology and molecular physics, these systems demonstrated for the first time how a computer could use a “network” of nodes to remember and recall information. The networks Hopfield developed could memorise data (such as a collection of black and white images). These images could be “recalled” by association when the network is prompted with a similar image. Although of limited practical use, Hopfield networks demonstrated that this type of ANN could store and retrieve data in new ways. They laid the foundation for later work by Hinton. Infographic showing how a neural network can store information as a kind of 'landscape'. Johan Jarnestad / The Royal Swedish Academy of Sciences[4] Machines that can learn Geoff Hinton (born 1947), sometimes called one of the “godfathers of AI[5]”, is a British-Canadian computer scientist who has made a number of important contributions to the field. In 2018, along with Yoshua Bengio and Yann LeCun, he was awarded the Turing Award (the highest honour in computer science) for his efforts to advance machine learning generally, and specifically a branch of it called deep learning. The Nobel Prize in Physics, however, is specifically for his work with Terrence Sejnowski and other colleagues in 1984, developing Boltzmann machines[6]. These are an extension of the Hopfield network that demonstrated the idea of machine learning – a system that lets a computer learn not from a programmer, but from examples of data. Drawing from ideas in the energy dynamics of statistical physics, Hinton showed how this early generative computer model could learn to store data over time by being shown examples of things to remember. Infographic showing different types of neural network. Johan Jarnestad / The Royal Swedish Academy of Sciences[7] The Boltzmann machine, like the Hopfield network before it, did not have immediate practical applications. However, a modified form (called the restricted Boltzmann machine) was useful in some applied problems. More important was the conceptual breakthrough that an artificial neural network could learn from data. Hinton continued to develop this idea. He later published influential papers on backpropagation[8] (the learning process used in modern machine learning systems) and convolutional neural networks[9] (the main type of neural network used today for AI systems that work with image and video data). Why this prize, now? Hopfield networks and Boltzmann machines seem whimsical compared to today’s feats of AI. Hopfield’s network contained only 30 neurons (he tried to make one with 100 nodes, but it was too much for the computing resources of the time), whereas modern systems such as ChatGPT can have millions. However, today’s Nobel prize underscores just how important these early contributions were to the field. While recent rapid progress in AI – familiar to most of us from generative AI systems such as ChatGPT – might seem like vindication for the early proponents of neural networks, Hinton at least has expressed concern. In 2023, after quitting a decade-long stint at Google’s AI branch, he said he was scared by the rate of development[10] and joined the growing throng of voices calling for more proactive AI regulation. After receiving the Nobel prize, Hinton said[11] AI will be “like the Industrial Revolution but instead of our physical capabilities, it’s going to exceed our intellectual capabilities”. He also said he still worries that the consequences of his work might be “systems that are more intelligent than us that might eventually take control”. References^ 2024 Nobel Prize in Physics (www.nobelprize.org)^ Johan Jarnestad / The Royal Swedish Academy of Sciences (www.nobelprize.org)^ Hopfield networks (www.pnas.org)^ Johan Jarnestad / The Royal Swedish Academy of Sciences (www.nobelprize.org)^ godfathers of AI (www.forbes.com)^ Boltzmann machines (www.cs.toronto.edu)^ Johan Jarnestad / The Royal Swedish Academy of Sciences (www.nobelprize.org)^ backpropagation (www.nature.com)^ convolutional neural networks (dl.acm.org)^ scared by the rate of development (www.nytimes.com)^ said (www.bbc.com)

Read more https://theconversation.com/physics-nobel-awarded-to-neural-network-pioneers-who-laid-foundations-for-ai-240833

Times Magazine

With Nvidia’s second-best AI chips headed for China, the US shifts priorities from security to trade

This week, US President Donald Trump approved previously banned exports[1] of Nvidia’s powerful ...

Navman MiVue™ True 4K PRO Surround honest review

If you drive a car, you should have a dashcam. Need convincing? All I ask that you do is search fo...

Australia’s supercomputers are falling behind – and it’s hurting our ability to adapt to climate change

As Earth continues to warm, Australia faces some important decisions. For example, where shou...

Australia’s electric vehicle surge — EVs and hybrids hit record levels

Australians are increasingly embracing electric and hybrid cars, with 2025 shaping up as the str...

Tim Ayres on the AI rollout’s looming ‘bumps and glitches’

The federal government released its National AI Strategy[1] this week, confirming it has dropped...

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

The Times Features

Why Fitstop Is the Gym Australians Are Turning to This Christmas

And How ‘Training with Purpose’ Is Replacing the Festive Fitness Guilt Cycle As the festive season ...

Statement from Mayor of Randwick Dylan Parker on Bondi Beach Terror Attack

Our community is heartbroken by the heinous terrorist attack at neighbouring Bondi Beach last nigh...

Coping With Loneliness, Disconnect and Conflict Over the Christmas and Holiday Season

For many people, Christmas is a time of joy and family get-togethers, but for others, it’s a tim...

Surviving “the wet”: how local tourism and accommodation businesses can sustain cash flow in the off-season

Across northern Australia and many coastal regions, “the wet” is not just a weather pattern — it...

“Go west!” Is housing affordable for a single-income family — and where should they look?

For decades, “Go west!” has been shorthand advice for Australians priced out of Sydney and Melbo...

Housing in Canberra: is affordable housing now just a dream?

Canberra was once seen as an outlier in Australia’s housing story — a planned city with steady e...

What effect do residential short-term rentals have on lifestyle and the housing market in Brisbane?

Walk through inner-Brisbane suburbs like Fortitude Valley, New Farm, West End or Teneriffe and i...

The Sydney Harbour Bridge faces tolls once again — despite tolls being abolished years ago. Why?

For many Sydney motorists, the Harbour Bridge toll was meant to be history. The toll booths cam...

The Victorian Paradox: how Labor keeps winning elections even when it feels “unpopular”

If you spend any time in a Melbourne café, a tradie ute yard, a Facebook comments section, or th...