The Times Australia
The Times World News

.

Australian researchers use a quantum computer to simulate how real molecules behave

  • Written by Ivan Kassal, Professor of Chemical Physics, University of Sydney

When a molecule absorbs light, it undergoes a whirlwind of quantum-mechanical transformations. Electrons jump between energy levels, atoms vibrate, and chemical bonds shift — all within millionths of a billionth of a second.

These processes underpin everything from photosynthesis in plants and DNA damage from sunlight, to the operation of solar cells and light-powered cancer therapies.

Yet despite their importance, chemical processes driven by light are difficult to simulate accurately. Traditional computers struggle, because it takes vast computational power to simulate this quantum behaviour.

Quantum computers, by contrast, are themselves quantum systems — so quantum behaviour comes naturally. This makes quantum computers natural candidates for simulating chemistry.

Until now, quantum devices have only been able to calculate unchanging things, such as the energies of molecules. Our study[1], published this week in the Journal of the American Chemical Society, demonstrates we can also model how those molecules change over time.

We experimentally simulated how specific real molecules behave after absorbing light.

Simulating reality with a single ion

We used what is called a trapped-ion quantum computer. This works by manipulating individual atoms in a vacuum chamber, held in place with electromagnetic fields.

Normally, quantum computers store information using quantum bits, or qubits. However, to simulate the behaviour of the molecules, we also used vibrations of the atoms in the computer called “bosonic modes”.

This technique is called mixed qudit-boson simulation. It dramatically reduces how big a quantum computer you need to simulate a molecule.

Photo of a person adjusting a complex device.
Using a new technique allows realistic simulations to be carried out with small quantum computers. Nicola Bailey

We simulated the behaviour of three molecules absorbing light: allene, butatriene, and pyrazine. Each molecule features complex electronic and vibrational interactions after absorbing light, making them ideal test cases.

Our simulation, which used a laser and a single atom in the quantum computer, slowed these processes down by a factor of 100 billion. In the real world, the interactions take femtoseconds, but our simulation of them played out in milliseconds – slow enough for us to see what happened.

A million times more efficient

What makes our experiment particularly significant is the size of the quantum computer we used.

Performing the same simulation with a traditional quantum computer (without using bosonic modes) would require 11 qubits, and to carry out roughly 300,000 “entangling” operations without errors. This is well beyond the reach of current technology.

By contrast, our approach accomplished the task by zapping a single trapped ion with a single laser pulse. We estimate our method is at least a million times more resource-efficient than standard quantum approaches.

We also simulated “open-system” dynamics, where the molecule interacts with its environment. This is typically a much harder problem for classical computers.

By injecting controlled noise into the ion’s environment, we replicated how real molecules lose energy. This showed environmental complexity can also be captured by quantum simulation.

What’s next?

This work is an important step forward for quantum chemistry. Even though current quantum computers are still limited in scale, our methods show that small, well-designed experiments can already tackle problems of real scientific interest.

Simulating the real-world behaviour of atoms and molecules is a key goal of quantum chemistry. It will make it easier to understand the properties of different materials, and may accelerate breakthroughs in medicine, materials and energy.

We believe that with a modest increase in scale — to perhaps 20 or 30 ions — quantum simulations could tackle chemical systems too complex for any classical supercomputer. That would open the door to rapid advances in drug development, clean energy, and our fundamental understanding of chemical processes that drive life itself.

References

  1. ^ Our study (doi.org)

Read more https://theconversation.com/australian-researchers-use-a-quantum-computer-to-simulate-how-real-molecules-behave-256870

Times Magazine

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

The Times Features

Why Diversification Still Matters in a Volatile Economy

Market volatility, geopolitical conflicts, inflation fears—these are only some of the wild cards that render the current financial environment a tightrope to walk. Amidst all thi...

Specialised nutrition gains momentum in supporting those living with early Alzheimer's disease

With high public interest in Alzheimer’s disease, there is growing awareness of the important role nutrition plays in supporting memory and cognitive function in people diagnosed...

From clinics to comfort: how sleep retreats are redefining care in Australia

Australia is amid a sleep health crisis. Nearly 40% of adults report inadequate sleep, and the consequences are far-reaching, impacting everything from cardiovascular health to...

Is our mental health determined by where we live – or is it the other way round? New research sheds more light

Ever felt like where you live is having an impact on your mental health? Turns out, you’re not imagining things. Our new analysis[1] of eight years of data from the New Zeal...

Going Off the Beaten Path? Here's How to Power Up Without the Grid

There’s something incredibly freeing about heading off the beaten path. No traffic, no crowded campsites, no glowing screens in every direction — just you, the landscape, and the...

West HQ is bringing in a season of culinary celebration this July

Western Sydney’s leading entertainment and lifestyle precinct is bringing the fire this July and not just in the kitchen. From $29 lobster feasts and award-winning Asian banque...