The Times Australia
News From Asia

.

Breakthrough in 0.05 Tesla MRI reported by HKU Engineering team in Science Journal

HONG KONG SAR - Media OutReach Newswire - 25 June 2024 - Magnetic resonance imaging (MRI) has revolutionised healthcare with its non-ionising, non-invasive, multi-contrast and quantitative capabilities. It also presents a promising platform for future artificial intelligence-driven medical diagnoses.

However, limited accessibility, especially in low and middle-income countries, is a challenge due to high costs and specialised settings required for standard superconducting MRI scanners. These scanners are mostly found in specialised radiology departments and large imaging centres, restricting their availability in other medical settings. The need for radiofrequency shielded rooms and high-power consumption further adds to the cost and mobility limitations. Furthermore, most MRI scanners are concentrated in high-income countries at present time, presenting an exemplary case of ever-expanding global healthcare disparity.

Prototype of a low-power, compact, and shielding-free MRI scanner using an open 0.05 Tesla permanent magnet. It incorporates active sensing and deep learning to address electromagnetic interference (EMI) signals.
Prototype of a low-power, compact, and shielding-free MRI scanner using an open 0.05 Tesla permanent magnet. It incorporates active sensing and deep learning to address electromagnetic interference (EMI) signals.

Led by Professor Ed X. Wu, Lam Woo and Chair Professor of Biomedical Engineering, a research team from Department of Electrical and Electronic Engineering at the University of Hong Kong (HKU) has developed a whole-body MRI scanner that operates on a standard wall power outlet without radiofrequency or magnetic shielding cages. The machine costs only a fraction of current clinical scanners, is safer, and needs no costly infrastructure to run.

The detailed findings have been published in renowned scientific journal Science, and companied by a Science Perspective article.

The scanner developed by the HKU team uses a compact 0.05 Tesla permanent magnet and incorporates active sensing and deep learning to address electromagnetic interference (EMI) signals. Human imaging at such a low magnetic field strength has been widely viewed as challenging, if not impossible. In order to eliminate EMI signals, the researchers deployed EMI sensing coils positioned around the scanner and implemented a deep learning method to directly predict EMI-free nuclear magnetic resonance signals from acquired data. To enhance image quality and reduce scan time, the team also developed a deep learning image formation method. It integrates image reconstruction and three-dimensional multi-scale super-resolution, and leverages the homogeneous human anatomy and image contrasts available in high-field high-resolution MRI data.

The team has succeeded in implementing commonly used clinical protocols with an ultra-low-field strength of 0.05 Tesla, including T1-weighted, T2-weighted, and diffusion-weighted imaging, and optimising their contrasts for different anatomical structures. Each protocol was designed to have a scan time of 8 minutes or less, with an image resolution of approximately 2x2x8 mm³. The scanner power consumption during scanning was under 1800W, and around 300W when idle.

The HKU team conducted imaging on healthy volunteers, capturing brain, spine, abdomen, lung, musculoskeletal, and cardiac images. Deep learning signal prediction effectively eliminated EMI signals, enabling clear imaging without shielding. The brain images showed various brain tissues, while the spine images revealed intervertebral disks, spinal cord, and cerebrospinal fluid. Abdominal images displayed major structures like the liver, kidneys, and spleen. Lung images showed pulmonary vessels and parenchyma. Knee images identified knee structures such as cartilage and meniscus. Cardiac cine images depicted the left ventricle contraction, while neck angiography revealed carotid arteries.

Additionally, a new deep learning image formation approach greatly improved the 0.05 Tesla image quality for various anatomical structures, including the brain, spine, abdomen, and knee. It effectively suppressed noise and artefacts and increased image spatial resolution.

The low-power and simplified whole-body 0.05 Tesla MRI scanner developed by Professor Wu's research team is able to operate without the need for radiofrequency or magnetic shielding to address MRI accessibility. The researchers experimentally demonstrated the general utility of this scanner for imaging various human anatomical structures at whole-body level, even in the presence of strong EMI signals, with acceptable scan time. They also demonstrated the potential of deep learning image formation to substantially augment 0.05 Tesla image quality by exploiting computing and extensive high-field MRI data.

The breakthroughs reported in this study shall catalyse the development of an entirely new class of affordable, patient-centric, and deep learning-powered ultra-low-field MRI scanners, addressing unmet clinical needs in diverse healthcare settings worldwide.

"We are looking forward to working with clinician scientists here at HKU and worldwide to advance computing-powered imaging technologies and explore their clinical values in the coming years," said Professor Wu.

"Nuclear magnetic resonance is a gift from nature since nature endows us humans with a vast quantity of MRI-visible water molecules, and we must utilise this magnetic resonance physics phenomenon more for the benefit of humanity." He added.

Link to the Science paper: https://www.science.org/stoken/author-tokens/ST-1847/full
Link to Science Perspective article: https://www.science.org/doi/10.1126/science.adp0670

Hashtag: #HKU

The issuer is solely responsible for the content of this announcement.

Times Magazine

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

The Times Features

Benefits of Tree Pruning for a Thriving Australian Garden

Tree pruning is an essential aspect of garden maintenance that often doesn't get the attention it deserves. It's a practice that involves the selective removal of certain parts...

What is psychosocial therapy? And why is the government thinking about adding it to Medicare for kids?

The government is considering new, bulk-billed health checks for three-year-olds, to pick up developmental concerns and refer kids that might need additional support. The de...

Detect Hidden Water Leaks Fast: Don’t Ignore Hot Water System Leaks

Detecting water leaks early is crucial for preventing extensive damage to your home. Among the various parts of a home’s plumbing system, hot water systems are particularly suscept...

Why do hamstring injuries happen so often and how can they be prevented?

In a recent clash against the Melbourne Storm, the Brisbane Broncos endured a nightmare rarely seen in professional sport — three players tore their hamstrings[1] in a single g...

What Is the Australian Government First Home Buyers Scheme About?

For many Australians, buying a first home can feel like a daunting task—especially with rising property prices, tight lending rules, and the challenge of saving for a deposit. ...

How artificial intelligence is reshaping the Australian business loan journey

The 2025 backdrop: money is moving differently If you run a small or medium-sized business in Australia, 2025 feels noticeably different. After two years of stubbornly high bo...