The Times Australia
The Times World News

.

Here's how researchers identify omicron and other COVID-19 variants

  • Written by Andre Hudson, Professor and Head of the Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology
Here's how researchers identify omicron and other COVID-19 variants

How do scientists detect new variants of the virus that causes COVID-19? The answer is a process called DNA sequencing[1].

Researchers sequence DNA to determine the order of the four chemical building blocks, or nucleotides[2], that make it up: adenine, thymine, cytosine and guanine. The millions to billions[3] of these building blocks paired up together collectively make up a genome[4] that contains all the genetic information an organism needs to survive.

When an organism replicates[5], it makes a copy of its entire genome to pass on to its offspring. Sometimes errors in the copying process can lead to mutations in which one or more building blocks are swapped, deleted or inserted. This may alter genes[6], the instruction sheets for the proteins that allow an organism to function, and can ultimately affect the physical characteristics of that organism. In humans, for example, eye and hair color[7] are the result of genetic variations that can arise from mutations. In the case of the virus that causes COVID-19, SARS-CoV-2[8], mutations can change its ability to spread, cause infection or even evade the immune system.

We are both biochemists[9] and microbiologists[10] who teach about and study the genomes of bacteria. We both use DNA sequencing in our research to understand how mutations affect antibiotic resistance. The tools we use to sequence DNA in our work are the same ones scientists are using right now to study the SARS-CoV-2 virus.

The first human genome took two decades to sequence. With advances in technology, scientists are now able to sequence DNA in a matter of hours.

How are genomes sequenced?

One of the earliest methods scientists used in the 1970s and 1980s was Sanger sequencing[11], which involves cutting up DNA into short fragments and adding radioactive or fluorescent tags to identify each nucleotide. The fragments are then put through an electric sieve that sorts them by size. Compared with newer methods, Sanger sequencing is slow and can process only relatively short stretches of DNA. Despite these limitations, it provides highly accurate data[12], and some researchers are still actively using this method to sequence SARS-CoV-2 samples[13].

Since the late 1990s[14], next-generation sequencing[15] has revolutionized how researchers collect data on and understand genomes. Known as NGS, these technologies are able to process much higher volumes of DNA at the same time, significantly reducing the amount of time it takes to sequence a genome.

There are two main types of NGS platforms: second-generation and third-generation sequencers.

Second-generation sequencing marks each nucleotide with a specific color.

Second-generation technologies[16] are able to read DNA directly. After DNA is cut up into fragments, short stretches of genetic material called adapters are added to give each nucleotide a different color. For example, adenine is colored blue and cytosine is colored red. Finally, these DNA fragments are fed into a computer and reassembled into the entire genomic sequence.

Third-generation technologies[17] like the Nanopore MinIon[18] directly sequence DNA by passing the entire DNA molecule through an electrical pore in the sequencer. Because each pair of nucleotides disrupts the electrical current in a particular way, the sequencer can read these changes and upload them directly to a computer. This allows clinicians to sequence samples at point-of-care clinical and treatment facilities. However, Nanopore sequences smaller volumes of DNA compared with other NGS platforms.

Third-generation sequencing detects changes in an electrical current to identify nucleotides.

Though each class of sequencer processes DNA in a different way, they can all report the millions or billions of building blocks that make up genomes in a short time – from a few hours to a few days. For example, the Illumina NovaSeq[19] can sequence roughly 150 billion nucleotides, the equivalent of 48 human genomes, in just three days.

Using sequencing data to fight coronavirus

So why is genomic sequencing such an important tool in combating the spread of SARS-CoV-2?

Rapid public health responses to SARS-CoV-2 require intimate knowledge of how the virus is changing over time. Scientists have been using genome sequencing to track SARS-CoV-2[20] almost in real time since the start of the pandemic. Millions of individual SARS-CoV-2 genomes have been sequenced and housed in various public repositories like the Global Initiative on Sharing Avian Influenza Data[21] and the National Center for Biotechnology Information[22].

Genomic surveillance has guided public health decisions as each new variant has emerged. For example, sequencing the genome of the omicron variant[23] allowed researchers to detect over 30 mutations in the spike protein that allows the virus to bind to cells in the human body. This makes omicron a variant of concern[24], as these mutations are known to contribute to the virus’s ability to spread. Researchers are still learning[25] about how these mutations might affect the severity of the infections omicron causes, and how well it’s able to evade current vaccines.

A screen showing sequences of the letters T, C, A and G.
This image shows a DNA readout of the alpha variant of SARS-CoV-2. A mutation is marked by dotted lines. Sebastian Gollnow/picture alliance via Getty Images[26]

Sequencing also has helped researchers identify variants that spread to new regions. Upon receiving a SARS-CoV-2 sample collected from a traveler who returned from South Africa on Nov. 22, 2021, researchers at the University of California, San Francisco, were able to detect omicron’s presence in five hours[27] and had nearly the entire genome sequenced in eight. Since then, the Centers for Disease Control and Prevention has been monitoring omicron’s spread[28] and advising the government on ways to prevent widespread community transmission.

The rapid detection of omicron worldwide[29] emphasizes the power of robust genomic surveillance and the value of sharing genomic data across the globe. Understanding the genetic makeup of the virus and its variants gives researchers and public health officials insights into how to best update public health guidelines and maximize resource allocation for vaccine and drug development. By providing essential information on how to curb the spread of new variants, genomic sequencing has saved and will continue to save countless lives over the course of the pandemic.

[Get the best of The Conversation, every weekend. Sign up for our weekly newsletter[30].]

References

  1. ^ DNA sequencing (www.genome.gov)
  2. ^ nucleotides (www.genome.gov)
  3. ^ millions to billions (dx.doi.org)
  4. ^ genome (www.nature.com)
  5. ^ an organism replicates (sciencing.com)
  6. ^ genes (medlineplus.gov)
  7. ^ eye and hair color (www.doi.org)
  8. ^ SARS-CoV-2 (doi.org)
  9. ^ biochemists (scholar.google.com)
  10. ^ microbiologists (scholar.google.com)
  11. ^ Sanger sequencing (www.nature.com)
  12. ^ highly accurate data (doi.org)
  13. ^ sequence SARS-CoV-2 samples (doi.org)
  14. ^ late 1990s (dx.doi.org)
  15. ^ next-generation sequencing (dx.doi.org)
  16. ^ Second-generation technologies (doi.org)
  17. ^ Third-generation technologies (dx.doi.org)
  18. ^ Nanopore MinIon (nanoporetech.com)
  19. ^ Illumina NovaSeq (www.illumina.com)
  20. ^ using genome sequencing to track SARS-CoV-2 (www.who.int)
  21. ^ Global Initiative on Sharing Avian Influenza Data (www.gisaid.org)
  22. ^ National Center for Biotechnology Information (www.ncbi.nlm.nih.gov)
  23. ^ omicron variant (www.cdc.gov)
  24. ^ variant of concern (www.who.int)
  25. ^ still learning (doi.org)
  26. ^ Sebastian Gollnow/picture alliance via Getty Images (www.gettyimages.com)
  27. ^ detect omicron’s presence in five hours (sanfrancisco.cbslocal.com)
  28. ^ monitoring omicron’s spread (www.cdc.gov)
  29. ^ rapid detection of omicron worldwide (www.cnn.com)
  30. ^ Sign up for our weekly newsletter (memberservices.theconversation.com)

Read more https://theconversation.com/genomic-sequencing-heres-how-researchers-identify-omicron-and-other-covid-19-variants-172935

Times Magazine

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

The Times Features

Do you really need a dental check-up and clean every 6 months?

Just over half of Australian adults[1] saw a dental practitioner in the past 12 months, most commonly for a check-up[2]. But have you been told you should get a check-up and c...

What is a Compounding Pharmacy and Why Do You Need One in Melbourne?

Ever picked up a prescription and thought, this pill is too big, too bitter, or full of things I cannot have? That is where a compounding chemist becomes important. A compounding p...

Deep Cleaning vs Regular Cleaning: Which One Do Perth Homes Really Need?

Whether you live in a coastal home in Cottesloe or a modern apartment in East Perth, keeping your living space clean isn’t just about aesthetics, it’s essential for your health and...

Rubber vs Concrete Wheel Stops: Which is Better for Your Car Park?

When it comes to setting up a car park in Perth, wheel stops are a small feature that make a big difference. From improving driver accuracy to preventing costly damage, the right c...

Not all processed foods are bad for you. Here’s what you can tell from reading the label

If you follow wellness content on social media or in the news, you’ve probably heard that processed food is not just unhealthy, but can cause serious harm. Eating a diet domin...

What happens if I eat too much protein?

The hype around protein[1] intake doesn’t seem to be going away. Social media is full of people urging you to eat more protein, including via supplements such as protein sha...