The Times Australia
The Times World News

.

astronomers spot two neutron stars being swallowed by black holes

  • Written by Rory Smith, Lecturer in Astrophysics, Monash University
astronomers spot two neutron stars being swallowed by black holes

One of the best things about being an astronomer is being able to discover something new about the universe. In fact, maybe the only thing better is discovering it twice. And that’s exactly what my colleagues and I have done, by making two separate observations, just ten days apart, of an entirely new type of astronomical phenomenon: a neutron star circling a black hole before being gobbled up.

The two observations were made in January 2020, by the Laser Interferometer Gravitational-wave Observatory (LIGO)[1] and the Virgo Observatory[2], both of which detect gravitational waves from the distant cosmos.

After 18 months of painstaking analysis, our discoveries are published today in The Astrophysics Journal Letters[3]. The new observations open up new avenues to study the life cycle of stars, the nature of space-time, and the behaviour of matter at extreme pressures and densities.

The first observation of a neutron star-black hole system was made on January 5 2020. LIGO and Virgo observed gravitational waves — distortions in the very fabric of space-time — produced by the final 30 seconds of the dying orbit of the neutron star and black hole, followed by their inevitable collision. The discovery is named GW200105.

Remarkably, just ten days later, LIGO and Virgo detected gravitational waves from a second collision between a neutron star and a black hole. This event is named GW200115. Both collisions happened around 900 million years ago, long before the first dinosaurs appeared on Earth.

Artist’s impression of a neutron star orbiting and colliding with a black hole – Carl Knox/OzGrav/Swinburne Univ.

Neutron stars and black holes are among the most extreme objects in the universe. They are the fossil relics of massive dead stars. When a star that is more than eight times as massive as the Sun runs out of fuel, it undergoes a spectacular explosion called a supernova. What remains can be a neutron star or a black hole.

Neutron stars are typically between 1.5 and 2 times as massive as the Sun, but are so dense that all their mass is packed into an object the size of a city. At this density, atoms can no longer sustain their structure, and dissolve into a stream of free quarks and gluons: the building blocks of protons and neutrons.

Black holes are even more extreme. There is no upper limit to how massive a black hole can be, but all black holes have two things in common: a point of no return at their surface called an “event horizon”, from which not even light can escape; and a point at their centre called a “singularity”, at which the laws of physics as we understand them break down.

It is fair to say black holes are an enigma. One of the holy grails of 21st-century physics and astronomy is to find a deeper understanding of the laws of nature by observing these strange and extreme objects.

Read more: Gravitational waves discovered: the universe has spoken[4]

A new type of star system

Neutron stars orbiting black hole companions have long been thought to exist. LIGO and Virgo had been searching for them for more than a decade, but they have remained elusive until now.

So why are we so confident we’ve now seen not one such system, but two?

When LIGO and Virgo observe gravitational waves, the first question on our minds is “what caused them?” To find that out, we use two things: our observational data, and supercomputer simulations of different types of astronomical events that could plausibly explain those data.

By comparing the simulations to our real observations, we look for those characteristics that best match our data, homing in on the likely ones and ruling out the unlikely ones.

For the first discovery (GW200105), we determined that the most likely source of the gravitational waves was the final few orbits, and eventual collision, between an object around 8.9 times the mass of the Sun, with an object around 1.9 times the mass of the Sun. Given the masses involved, the most plausible explanation is that the heavier object is a black hole, and the lighter one is a neutron star.

Similarly, from the second (GW200115), we determined that its most likely source was the final few orbits and collision of a 5.7-solar-mass black hole with a 1.5-solar-mass neutron star.

There is no definitive smoking gun that the lighter objects are neutron stars, and in principle they could be very light black holes, although we consider this explanation unlikely. By far the best hypothesis is that our new observations are consistent with the merger of neutron stars and black holes.

Stellar fossil-hunting

Our discoveries have several intriguing implications. Neutron star-black hole systems allow us to piece together the evolutionary history of stars. Gravitational-wave astronomers are like stellar fossil-hunters, using the relics of exploded stars to understand how massive stars form, live and die.

We have been doing this for several years with LIGO/Virgo’s observations of pairs of black holes[5] and pairs of neutron stars[6]. The newly discovered rarer pairs, containing one of each, are fascinating pieces of the stellar fossil record.

For the first time we have directly measured the rate at which neutron stars merge with black holes: we think there are likely to be tens or hundreds of thousands such collisions across the universe per year. With more observations, we will measure the rate more precisely.

What happens to the neutron stars after they’ve been gobbled up? Now we’re really looking at the laws of nature turned up to 11. When neutron stars merge with black holes, they are deformed, imprinting information about their exotic form of matter onto the gravitational waves we observe on Earth.

This can reveal the composition of neutron stars, which in turn tells us about how quarks and gluons behave at extreme pressure and density. It doesn’t tell us what’s going on behind the black hole’s event horizon, although another aspect of our discoveries is that we can look for hints of new physics in black holes in the gravitational-wave signals.

Read more: When black holes meet: inside the cataclysms that cause gravitational waves[7]

When LIGO and Virgo resume observing in mid-2022 after an upgrade to boost their sensitivity still further, we will see more collisions between neutron stars and black holes. In the coming decade we expect to amass thousands more gravitational-wave detections.

Over time we hope to piece together the laws of nature that will help us understand the inner workings of the most extreme and impenetrable objects in the universe.

Read more https://theconversation.com/laws-of-nature-turned-up-to-11-astronomers-spot-two-neutron-stars-being-swallowed-by-black-holes-163575

Times Magazine

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Times Features

How to Choose a Cosmetic Clinic That Aligns With Your Aesthetic Goals

Clinics that align with your goals prioritise subtlety, safety, and client input Strong results come from experience, not trends or treatment bundles A proper consultation fe...

7 Non-Invasive Options That Can Subtly Enhance Your Features

Non-invasive treatments can refresh your appearance with minimal downtime Options range from anti-wrinkle treatments to advanced skin therapies Many results appear gradually ...

What is creatine? What does the science say about its claims to build muscle and boost brain health?

If you’ve walked down the wellness aisle at your local supermarket recently, or scrolled the latest wellness trends on social media, you’ve likely heard about creatine. Creati...

Whole House Water Filters: Essential or Optional for Australian Homes?

Access to clean, safe water is something most Australians take for granted—but the reality can be more complex. Our country’s unique climate, frequent droughts, and occasional ...

How Businesses Turn Data into Actionable Insights

In today's digital landscape, businesses are drowning in data yet thirsting for meaningful direction. The challenge isn't collecting information—it's knowing how to turn data i...

Why Mobile Allied Therapy Services Are Essential in Post-Hospital Recovery

Mobile allied health services matter more than ever under recent NDIA travel funding cuts. A quiet but critical shift is unfolding in Australia’s healthcare landscape. Mobile all...