The Times Australia
The Times World News

.

How do pigeons find their way home? We looked in their ears with a diamond-based quantum microscope to find out

  • Written by David Simpson, School of Physics, Senior Lecturer, The University of Melbourne
How do pigeons find their way home? We looked in their ears with a diamond-based quantum microscope to find out

Homing pigeons are known for their uncanny ability to find their way home – navigating complex and changing landscapes. In fact, they do this so well they were used as a source of secure communication more than 2,000 years ago.

Julius Caesar reportedly sent[1] news of his conquest of Gaul back to Rome via pigeons, as did Napoleon Bonaparte[2] following his defeat by England in the 1815 Battle of Waterloo.

We know pigeons use visual cues and can navigate based on landmarks along known travel routes. We also know they have a magnetic sense called “magnetoreception” which lets them navigate using Earth’s magnetic field.

Read more: Explainer: how do homing pigeons navigate?[3]

But we don’t know exactly how they (and other species) do this. In research[4] published today in the Proceedings of National Academy of Sciences, my colleagues and I tested a theory that attempts to link magnetoreception in homing pigeons with tiny lumps of iron-rich material found in their inner ears.

By using a new kind of magnetic microscope, we confirmed this isn’t the case. But the technology has opened the door for us to investigate the phenomenon in several other species.

The current hypotheses

Scientists have spent decades exploring the possible mechanisms for magnetoreception. There are currently two mainstream theories.

The first is a vision-based “free-radical pair” model. Homing pigeons and other migratory birds have proteins in the retina of their eyes called “cryptochromes”. These produce an electrical signal that varies depending on the strength[5] of the local magnetic field.

This could potentially allow the birds to “see” Earth’s magnetic field, although scientists have yet to confirm this theory.

The second proposal for how homing pigeons navigate is based on lumps of magnetic material inside them, which may provide them with a magnetic particle-based directional compass.

We know magnetic particles are found in nature, in a group of bacteria called magnetotactic bacteria[6]. These bacteria produce magnetic particles and orient themselves along the Earth’s magnetic field lines.

Scientists are now looking for magnetic particles in a range of species. Potential candidates were found[7] in the upper beak of homing pigeons more than a decade ago, but subsequent work[8] indicated these particles were related to iron storage and not magnetic sensing.

Read more: New evidence for a human magnetic sense that lets your brain detect the Earth's magnetic field[9]

A peek inside a pigeon’s ear

The new search is now underway in the inner ear of pigeons, where iron particles known as “cuticulosomes” were first identified[10] in 2013.

Single cuticulosomes have been located within distinct regions in the pigeon inner ear where other known sensory systems exist (such as for hearing and balancing during flight). In theory, if there were a magnetic sensing system in pigeons, it should be located close to other sensory systems.

But to determine whether iron cuticulosomes can act as magnetoreceptors in pigeons, scientists need to determine their magnetic properties. This is no mean feat, since cuticulosomes are 1,000 times smaller than a grain of sand.

What’s more is they are only found in 30% of the hair cells within the inner ear, making them difficult to identify and characterise.

Diagram showing a homing pigeon's inner ear, with labels for hair cells and magnetic particles.
We conducted quantum magnetic imaging of iron-organelles in the pigeon inner ear. Robert W de Gille, Author provided

To tackle this problem our group at the University of Melbourne, together with colleagues from Vienna’s Institute of Molecular Pathology and the Max Planck Society in Bonn, turned to a new imaging technology to explore the magnetic properties of iron cuticulosomes in the pigeon inner ear.

We developed a magnetic microscope that uses diamond-based sensors to visualise delicate magnetic fields emanating from tiny magnetic particles.

Disproving the theory

We carefully studied thin sections of the pigeon inner ear placed directly onto the diamond sensors. By applying magnetic fields of varying strengths to the tissue, we were able to gauge the magnetic susceptibility of single cuticulosomes.

Our results showed the magnetic properties of the cuticulosomes were not strong enough for them to act as a magnetic particle-based magnetoreceptor. In fact, the particles would need to be 100,000 times stronger to activate the sensory pathways required for magnetoreception in pigeons.

However, despite the search for the elusive magnetoreceptor coming up short, we are extremely excited by the potential of this magnetic microscope technology.

We hope to use it study a host of magnetic candidates across a variety of species including rodents, fish and turtles. And by doing so we can focus not only on cuticulosomes, but a range of other potentially magnetic particles.

References

  1. ^ reportedly sent (www.asor.org)
  2. ^ as did Napoleon Bonaparte (www.ft.com)
  3. ^ Explainer: how do homing pigeons navigate? (theconversation.com)
  4. ^ research (www.pnas.org)
  5. ^ varies depending on the strength (www.nature.com)
  6. ^ magnetotactic bacteria (theconversation.com)
  7. ^ were found (link.springer.com)
  8. ^ subsequent work (www.nature.com)
  9. ^ New evidence for a human magnetic sense that lets your brain detect the Earth's magnetic field (theconversation.com)
  10. ^ were first identified (www.sciencedirect.com)

Read more https://theconversation.com/how-do-pigeons-find-their-way-home-we-looked-in-their-ears-with-a-diamond-based-quantum-microscope-to-find-out-171738

Times Magazine

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

The Times Features

Flipping vs. Holding: Which Investment Strategy Is Right for You?

Are you wondering whether flipping a property or holding onto it is the better investment strategy? The answer isn’t one-size-fits-all. Both strategies have distinct advantages a...

Why Everyone's Talking About Sea Moss - And Should You Try It Too?

Sea moss - a humble marine plant that’s been used for centuries - is making a major comeback in modern wellness circles. And it’s not just a trend. With growing interest from athle...

A Guide to Smarter Real Estate Accounting: What You Might Be Overlooking

Real estate accounting can be a complex terrain, even for experienced investors and property managers. From tracking rental income to managing property expenses, the financial in...

What Is the Dreamtime? Understanding Aboriginal Creation Stories Through Art

Aboriginal culture is built on the deep and important meaning of Dreamtime, which links beliefs and history with the elements that make life. It’s not just myths; the Dreamtime i...

How Short-Term Lenders Offer Long-Lasting Benefits in Australia

In the world of personal and business finance, short-term lenders are often viewed as temporary fixes—quick solutions for urgent cash needs. However, in Australia, short-term len...

Why School Breaks Are the Perfect Time to Build Real Game Skills

School holidays provide uninterrupted time to focus on individual skill development Players often return sharper and more confident after structured break-time training Holid...