The Times Australia
The Times World News

.

Did this chemical reaction create the building blocks of life on Earth?

  • Written by Quoc Phuong Tran, PhD Candidate in Prebiotic Chemistry, UNSW Sydney
Did this chemical reaction create the building blocks of life on Earth?

How did life begin? How did chemical reactions on the early Earth create complex, self-replicating structures that developed into living things as we know them?

According to one school of thought, before the current era of DNA-based life, there was a kind of molecule called RNA (or ribonucleic acid). RNA – which is still a crucial component of life today – can replicate itself and catalyse other chemical reactions.

But RNA molecules themselves are made from smaller components called ribonucleotides. How would these building blocks have formed on the early Earth, and then combined into RNA?

Chemists like me are trying to recreate the chain of reactions required to form RNA at the dawn of life, but it’s a challenging task. We know whatever chemical reaction created ribonucleotides must have been able to happen in the messy, complicated environment found on our planet billions of years ago.

I have been studying whether “autocatalytic” reactions may have played a part. These are reactions that produce chemicals that encourage the same reaction to happen again, which means they can sustain themselves in a wide range of circumstances.

In our latest work[1], my colleagues and I have integrated autocatalysis into a well-known chemical pathway for producing the ribonucleotide building blocks, which could have plausibly happened with the simple molecules and complex conditions found on the early Earth.

The formose reaction

Autocatalytic reactions play crucial roles in biology, from regulating our heartbeats to forming patterns on seashells. In fact, the replication of life itself, where one cell takes in nutrients and energy from the environment to produce two cells, is a particularly complicated example of autocatalysis.

A chemical reaction called the formose reaction, first discovered in 1861, is one of the best examples of an autocatalytic reaction that could have happened on the early Earth.

An old black and white photograph of a bald, bearded man wearing an old-fashioned coat.
The formose reaction was discovered by Russian chemist Alexander Butlerov in 1861. Wikimedia[2]

In essence, the formose reaction starts with one molecule of a simple compound called glycolaldehyde (made of hydrogen, carbon and oxygen) and ends with two. The mechanism relies on a constant supply of another simple compound called formaldehyde.

A reaction between glycolaldehyde and formaldehyde makes a bigger molecule, splitting off fragments that feed back into the reaction and keep it going. However, once the formaldehyde runs out, the reaction stops, and the products start to degrade from complex sugar molecules into tar.

Read more: Can bleach help solve the origin of life in the primordial soup?[3]

The formose reaction shares some common ingredients with a well-known chemical pathway to make ribonucleotides, known as the Powner–Sutherland pathway. However, until now no one has tried to connect the two – with good reason.

The formose reaction is notorious for being “unselective”. This means it produces a lot of useless molecules alongside the actual products you want.

An autocatalytic twist in the pathway to ribonucleotides

In our study, we tried adding another simple molecule called cyanamide to the formose reaction. This makes it possible for some of the molecules made during the reaction to be “siphoned off” to produce ribonucleotides.

The reaction still does not produce a large quantity of ribonucleotide building blocks. However, the ones it does produce are more stable and less likely to degrade.

What’s interesting about our study is the integration of the formose reaction and ribonucleotide production. Previous investigations have studied each separately, which reflects how chemists usually think about making molecules.

A photo showing a drop of blue liquid about to fall from a pipette into one of several empty test tubes.
Chemistry often focuses on clean, efficient and productive reactions, rather than messy combinations. Shutterstock[4]

Generally speaking, chemists tend to avoid complexity so as to maximise the quantity and purity of a product. However, this reductionist approach can prevent us from investigating dynamic interactions between different chemical pathways.

These interactions, which happen everywhere in the real world outside the lab, are arguably the bridge between chemistry and biology.

Industrial applications

Autocatalysis also has industrial applications. When you add cyanamide to the formose reaction, another of the products is a compound called 2-aminooxazole, which is used in chemistry research and the production of many pharmaceuticals.

Conventional 2-aminooxazole production often uses cyanamide and glycolaldehyde, the latter of which is expensive. If it can be made using the formose reaction, only a small amount of glycolaldehyde will be needed to kickstart the reaction, cutting costs.

Our lab is currently optimising this procedure in the hope we can manipulate the autocatalytic reaction to make common chemical reactions cheaper and more efficient, and their pharmaceutical products more accessible. Maybe it won’t be as big a deal as the creation of life itself, but we think it could still be worthwhile.

Read more: We've been wrong about the origins of life for 90 years[5]

References

  1. ^ our latest work (pubs.rsc.org)
  2. ^ Wikimedia (en.wikipedia.org)
  3. ^ Can bleach help solve the origin of life in the primordial soup? (theconversation.com)
  4. ^ Shutterstock (www.shutterstock.com)
  5. ^ We've been wrong about the origins of life for 90 years (theconversation.com)

Read more https://theconversation.com/did-this-chemical-reaction-create-the-building-blocks-of-life-on-earth-216843

Times Magazine

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

Understanding ITIL 4 and PRINCE2 Project Management Synergy

Key Highlights ITIL 4 focuses on IT service management, emphasising continual improvement and value creation through modern digital transformation approaches. PRINCE2 project management supports systematic planning and execution of projects wit...

What AI Adoption Means for the Future of Workplace Risk Management

Image by freepik As industrial operations become more complex and fast-paced, the risks faced by workers and employers alike continue to grow. Traditional safety models—reliant on manual oversight, reactive investigations, and standardised checklist...

The Times Features

Why Diversification Still Matters in a Volatile Economy

Market volatility, geopolitical conflicts, inflation fears—these are only some of the wild cards that render the current financial environment a tightrope to walk. Amidst all thi...

Specialised nutrition gains momentum in supporting those living with early Alzheimer's disease

With high public interest in Alzheimer’s disease, there is growing awareness of the important role nutrition plays in supporting memory and cognitive function in people diagnosed...

From clinics to comfort: how sleep retreats are redefining care in Australia

Australia is amid a sleep health crisis. Nearly 40% of adults report inadequate sleep, and the consequences are far-reaching, impacting everything from cardiovascular health to...

Is our mental health determined by where we live – or is it the other way round? New research sheds more light

Ever felt like where you live is having an impact on your mental health? Turns out, you’re not imagining things. Our new analysis[1] of eight years of data from the New Zeal...

Going Off the Beaten Path? Here's How to Power Up Without the Grid

There’s something incredibly freeing about heading off the beaten path. No traffic, no crowded campsites, no glowing screens in every direction — just you, the landscape, and the...

West HQ is bringing in a season of culinary celebration this July

Western Sydney’s leading entertainment and lifestyle precinct is bringing the fire this July and not just in the kitchen. From $29 lobster feasts and award-winning Asian banque...