The Times Australia
The Times World News

.

Floating robots reveal just how much airborne dust fertilises the Southern Ocean – a key climate ‘shock absorber’

  • Written by Jakob Weis, Postdoctoral research associate, University of Tasmania
Floating robots reveal just how much airborne dust fertilises the Southern Ocean – a key climate ‘shock absorber’

The Southern Ocean, a region critical to Earth’s climate, hosts vast blooms of microscopic ocean plants known as phytoplankton. They form the very basis of the Antarctic food web.

Using a fleet of robotic floats, our study published in Nature today[1] reveals that windblown dust delivers enough iron to support a third of the Southern Ocean’s phytoplankton growth. Knowing this will help us understand how global warming will affect key climate processes phytoplankton are involved in.

The Southern Ocean acts as a climate “shock absorber”[2]. Its cold waters and vast area capture up to 40% of human-generated carbon dioxide (CO₂) absorbed by the planet’s oceans each year.

Human-generated CO₂ mainly enters the ocean as it dissolves at the surface. However, biological processes that transfer vast quantities of CO₂ from the surface to the deep ocean play a critical role in the ocean’s natural carbon cycle.

Even slight changes to these processes in the Southern Ocean could weaken or strengthen the climate shock absorber. This is where phytoplankton play a key role.

A satellite image of a landmass with ocean next to it with swirls of turquoise and green.
A massive phytoplankton bloom off of the Atlantic coast of Patagonia, Argentina, in 2010. NASA's Earth Observatory/Norman Kuring, Ocean Color Web[3]

Phytoplankton: tiny but mighty

Like plants on land, phytoplankton convert CO₂ into biomass through photosynthesis. When phytoplankton die, they sink into the deep ocean. This effectively locks away the carbon for decades, or even hundreds of years. This is known as the biological carbon pump[4], and it helps to regulate Earth’s climate.

Phytoplankton need nutrients and light to flourish. Nitrogen, in the form of nitrate, is one of these essential nutrients and is plentiful in the Southern Ocean. During the bloom period in spring and summer, phytoplankton consume nitrate.

This offers scientists a unique opportunity – by measuring how much nitrate disappears seasonally, they can calculate the growth of phytoplankton and the carbon sequestered in their biomass.

But there’s a twist. Iron, another essential nutrient, is in short supply in the Southern Ocean. This shortage stunts phytoplankton growth, lowering the efficiency of the biological carbon pump.

Read more: Oceans absorb 30% of our emissions, driven by a huge carbon pump. Tiny marine animals are key to working out its climate impacts[5]

Dust boosts life in the Southern Ocean

Iron is commonly found in soil. Winds carry iron-rich dust from the continents to the oceans. This supply of dust-derived iron can trigger phytoplankton blooms, greening stretches of the ocean and strengthening the carbon pump.

Historically, to study the effects of iron fertilisation on phytoplankton – whether the iron came from dust, other natural sources[6], or was deliberately added – scientists had to embark on expensive research voyages to the remote Southern Ocean.

However, insights from such experiments were restricted to small regions and short periods during certain seasons. Little was known about the impact of dust on phytoplankton all year round across the whole of the Southern Ocean.

To address this gap, we turned to robots.

People in red safety vests handle a large machine while standing on the deck of a ship. Researchers deploy a robotic float off the CSIRO research vessel (RV) Investigator. Jakob Weis

Ocean robots follow the trail of dust

Over the past decade, research organisations have deployed a fleet of robotic ocean floats worldwide[7]. These robots tirelessly track ocean properties, including the nitrate concentration.

Strong westerly winds carry dust from the deserts of Australia, Patagonia and southern Africa across the Southern Ocean. The dust deposition shown here was calculated by computer models. Adapted from Weis et al. (2024)

In our study, we analysed nitrate measurements at 13,600 locations in the Southern Ocean. We calculated phytoplankton growth from nitrate disappearance and combined these growth estimates with computer models of dust deposition.

With this new approach, we uncovered a direct link between the supply of dust-derived iron and phytoplankton growth. Importantly, we also found the dust doesn’t just coincide with phytoplankton growth – it actually fuels it by supplying iron.

We used this relationship to build productivity maps of the Southern Ocean — past, present or future. These maps suggest that dust supports roughly a third of the phytoplankton growth in the Southern Ocean today.

During ice ages, a combination of drier conditions, lower sea levels and stronger winds meant dust deposition on the Southern Ocean was up to 40 times greater[8] than today.

When we apply dust simulations of the last ice age to our newfound relationship, we estimate that phytoplankton growth was two times higher during these dustier times than it is today.

So, by fuelling phytoplankton growth, dust likely played an important role in keeping atmospheric CO₂ concentrations low during ice ages.

Why does it matter?

Global warming and land use changes could rapidly change dust delivery[9] to the ocean in the future.

These shifts would have important consequences for ocean ecosystems and fisheries, and our research provides the tools to help forecast these changes.

To keep global warming below 1.5˚C, it is imperative that we find safe and effective methods for actively removing CO₂ from the atmosphere[10]. One proposed and controversial strategy involves fertilising the Southern Ocean with iron, mimicking the natural processes that decreased CO₂ during ice ages.

Our results suggest such a strategy could boost productivity in the least dusty parts of the Southern Ocean, but uncertainties remain around the ecological consequences of this intervention and its long term effectiveness in capturing carbon.

By studying how nature has done this in the past, we can learn more about the possible outcomes and practicality[11] of fertilising the ocean to mitigate climate change.

Read more: Geoengineering the ocean to fight climate change raises serious environmental justice questions[12]

References

  1. ^ published in Nature today (www.nature.com)
  2. ^ a climate “shock absorber” (research.noaa.gov)
  3. ^ NASA's Earth Observatory/Norman Kuring, Ocean Color Web (science.nasa.gov)
  4. ^ biological carbon pump (theconversation.com)
  5. ^ Oceans absorb 30% of our emissions, driven by a huge carbon pump. Tiny marine animals are key to working out its climate impacts (theconversation.com)
  6. ^ other natural sources (theconversation.com)
  7. ^ a fleet of robotic ocean floats worldwide (eos.org)
  8. ^ 40 times greater (icecores.org)
  9. ^ could rapidly change dust delivery (www.ipcc.ch)
  10. ^ actively removing CO₂ from the atmosphere (www.nature.com)
  11. ^ learn more about the possible outcomes and practicality (phys.org)
  12. ^ Geoengineering the ocean to fight climate change raises serious environmental justice questions (theconversation.com)

Read more https://theconversation.com/floating-robots-reveal-just-how-much-airborne-dust-fertilises-the-southern-ocean-a-key-climate-shock-absorber-225793

Times Magazine

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Decline of Hyper-Casual: How Mid-Core Mobile Games Took Over in 2025

In recent years, the mobile gaming landscape has undergone a significant transformation, with mid-core mobile games emerging as the dominant force in app stores by 2025. This shift is underpinned by changing user habits and evolving monetization tr...

The Times Features

How Businesses Turn Data into Actionable Insights

In today's digital landscape, businesses are drowning in data yet thirsting for meaningful direction. The challenge isn't collecting information—it's knowing how to turn data i...

Why Mobile Allied Therapy Services Are Essential in Post-Hospital Recovery

Mobile allied health services matter more than ever under recent NDIA travel funding cuts. A quiet but critical shift is unfolding in Australia’s healthcare landscape. Mobile all...

Sydney Fertility Specialist – Expert IVF Treatment for Your Parenthood Journey

Improving the world with the help of a new child is the most valuable dream of many couples. To the infertile, though, this process can be daunting. It is here that a Sydney Fertil...

Could we one day get vaccinated against the gastro bug norovirus? Here’s where scientists are at

Norovirus is the leading cause[1] of acute gastroenteritis outbreaks worldwide. It’s responsible for roughly one in every five cases[2] of gastro annually. Sometimes dubbed ...

Does running ruin your knees? And how old is too old to start?

You’ve probably heard that running is tough on your knees – and even that it can cause long-term damage. But is this true? Running is a relatively high-impact activity. Eve...

Jetstar announces first ever Brisbane to Rarotonga flights with launch fares from just $249^ one-way

Jetstar will start operating direct flights between Brisbane and Rarotonga, the stunning capital island of the Cook Islands, in May 2026, with launch sale fares available today...