The Times Australia
The Times World News

.

Learn how to make a sonobe unit in origami – and unlock a world of mathematical wonder

  • Written by Julia Collins, Lecturer of Mathematics, Edith Cowan University
Learn how to make a sonobe unit in origami – and unlock a world of mathematical wonder

This article is part of a series[1] explaining how readers can learn the skills to take part in activities that academics love doing as part of their work.

Many of us could happily fold a paper crane[2], yet few feel confident solving an equation like x³ – 3 x² – x + 3 = 0, to find a value for x.

Both activities, however, share similar skills: precision, the ability to follow an algorithm, an intuition for shape, and a search for pattern and symmetry.

I’m a mathematician whose hobby is origami, and I love introducing people to mathematical ideas through crafts like paper folding. Any piece of origami will contain mathematical ideas and skills, and can take you on a fascinating, creative journey.

Read more: Why bother calculating pi to 62.8 trillion digits? It's both useless and fascinating[3]

Once you’ve mastered the basic structure of a 3D shape, you may find yourself pondering deeper mathematical questions. Julia Collins

The ‘building blocks’ of origami models

As a geometer (mathematician who studies geometry), my favourite technique is modular origami. That’s where you use several pieces of folded paper as “building blocks” to create a larger, often symmetrical structure.

The building blocks, called units, are typically straightforward to fold; the mathematical skill comes in assembling the larger structure and discovering the patterns within them.

Many modular origami patterns, although they may use different units, have a similar method of combining units into a bigger creation.

So, for a little effort you are rewarded with a vast number of models to explore.

My website Maths Craft Australia[4] contains a range of modular origami patterns, as well as patterns for other crafts such as crochet, knitting and stitching.

They require no mathematical background but will take you in some fascinating mathematical directions.

This model, folded by the author, uses a design from the book Perfectly Mindful Origami - The Art and Craft of Geometric Origami by Mark Bolitho.

Building 3D shapes from smaller 2D units

In mathematics, the shapes with the most symmetry are called the Platonic solids[5]. They’re named after the ancient Greek philosopher Plato (although they almost certainly predate him and have been discovered in ancient civilisations around the world).

The Platonic solids are 3D shapes made from regular 2D shapes (also known as regular polygons) where every side and angle is identical: equilateral triangles, squares, pentagons.

While there are infinitely many regular polygons, there are, surprisingly, only five Platonic solids:

  • the tetrahedron (four triangles)

  • the cube (six squares)

  • the octahedron (eight triangles)

  • the dodecahedron (12 pentagons) and

  • the icosahedron (20 triangles).

To build Platonic solids in origami, the best place to start is to master what’s known as the “sonobe unit[6]”.

Sonobe units, like these ones piled in a stack, can be put together to create 3D shapes. Sonobe units, like these ones piled in a stack, can be put together to create 3D shapes. Julia Collins, Author provided

Enter the sonobe unit

A sonobe unit (sometimes called the sonobe module) looks a bit like a parallelogram with two flaps folded behind.

I’ve got instructions for how to make a sonobe unit on my website[7] and there are plenty of videos online, like this one:

How to make a sonobe unit.

Sonobe units are fast and simple to fold, and can be fitted together to create beautiful, intriguing 3D shapes like these:

Three sonobe origami models by Julia Collins.

You will need six sonobe units to make a cube like the yellow-blue-green one pictured above, 12 to make an octahedron (the red-pink-purple one), and 30 to make an icosahedron (the golden one). (Interestingly, it’s not possible to build a tetrahedron and dodecahedron from sonobe units).

I’ve got written instructions for building the cube on my website[8], and some quick searching online will find you instructions for the larger models.

Sonobe units can be put together to build wondrous shapes. Sonobe units can be put together to build wondrous shapes. Julia Collins, Author provided

Into the mathematical rabbit hole

Once you’ve mastered the basic structure of each 3D shape, you may find yourself (as others have done[9]) pondering deeper mathematical questions.

Can you arrange the sonobe units so two units of the same colour never touch, if you only have three colours?

Are larger symmetric shapes possible? (Answer: yes!)

Are there relationships between the different 3D shapes? (For example, the icosahedron is basically built of triangles, but can you spot the pentagons lurking within? Or the triangles in the dodecahedron?)

One seemingly innocent question can easily lead to a mathematical rabbit hole.

Questions about colouring will lead you to the mathematics of graphs and networks (and big questions that remained unsolved for many centuries[10]).

Questions about larger models will lead you to the Archimedean solids[11] and the Johnson solids[12]. These 3D shapes have a lot of symmetry, though not as much as the Platonic solids.

Then, for a truly mind-bending journey, you might land on the concept of higher-dimensional symmetric shapes[13].

Or perhaps your questions will lead you in the opposite direction.

Instead of using origami to explore new ideas in mathematics, some researchers have used mathematical frameworks to explore new ideas in origami.

Origami can take you into the mathematical rabbit hole. Origami can take you into the mathematical rabbit hole. Julia Collins, Author provided

Solving old problems in new ways

Perhaps the most famous mathematical origami artist is the US-based former NASA physicist Robert Lang[14], who designs computer programs that generate crease patterns for fantastically complicated models.

His models include segmented tarantulas and ants, stags with twisted antlers and soaring, feathered birds.

Credit: Great Big Story/YouTube.

Robert Lang and others have also created crease patterns for use in new engineering contexts such as folding telescope lenses[15], air bags[16] and solar panels[17].

Read more: Curved origami offers a creative route to making robots and other mechanical devices[18]

My final example of the power of origami goes back to the cubic equation I mentioned at the outset:

x³ – 3 x² – x + 3 = 0

Cubic equations relate to some “impossible” mathematical problems, such as trisecting an angle[19] (splitting an arbitrary angle into three equal angles). Or doubling a cube[20] (which is finding a cube with double the volume of a given cube).

A blue and purple origami shape sits on a grey background. Any piece of origami will contain mathematical ideas and skills. Julia Collins, Author provided

Famously, these problems cannot be solved using the classical methods of a straightedge (ruler without the markings) and compass.

In 1980, however, Japanese mathematician Hisashi Abe showed how to solve all these problems using origami[21].

I am excited to see where mathematics and origami will intersect in future. Grab some paper today, make a few models and start your own journey of mathematical exploration.

You can read other articles in this series here[22].

References

  1. ^ series (theconversation.com)
  2. ^ paper crane (origami.me)
  3. ^ Why bother calculating pi to 62.8 trillion digits? It's both useless and fascinating (theconversation.com)
  4. ^ Maths Craft Australia (www.mathscraftaus.org)
  5. ^ Platonic solids (en.wikipedia.org)
  6. ^ sonobe unit (momath.org)
  7. ^ on my website (static1.squarespace.com)
  8. ^ on my website (static1.squarespace.com)
  9. ^ others have done (www.polypompholyx.com)
  10. ^ unsolved for many centuries (en.wikipedia.org)
  11. ^ Archimedean solids (en.wikipedia.org)
  12. ^ Johnson solids (en.wikipedia.org)
  13. ^ higher-dimensional symmetric shapes (en.wikipedia.org)
  14. ^ Robert Lang (langorigami.com)
  15. ^ folding telescope lenses (langorigami.com)
  16. ^ air bags (royalsocietypublishing.org)
  17. ^ solar panels (www.nasa.gov)
  18. ^ Curved origami offers a creative route to making robots and other mechanical devices (theconversation.com)
  19. ^ trisecting an angle (mathworld.wolfram.com)
  20. ^ doubling a cube (en.wikipedia.org)
  21. ^ solve all these problems using origami (plus.maths.org)
  22. ^ here (theconversation.com)

Read more https://theconversation.com/learn-how-to-make-a-sonobe-unit-in-origami-and-unlock-a-world-of-mathematical-wonder-171390

Times Magazine

Building a Strong Online Presence with Katoomba Web Design

Katoomba web design is more than just creating a website that looks good—it’s about building an online presence that reflects your brand, engages your audience, and drives results. For local businesses in the Blue Mountains, a well-designed website a...

September Sunset Polo

International Polo Tour To Bridge Historic Sport, Life-Changing Philanthropy, and Breath-Taking Beauty On Saturday, September 6th, history will be made as the International Polo Tour (IPT), a sports leader headquartered here in South Florida...

5 Ways Microsoft Fabric Simplifies Your Data Analytics Workflow

In today's data-driven world, businesses are constantly seeking ways to streamline their data analytics processes. The sheer volume and complexity of data can be overwhelming, often leading to bottlenecks and inefficiencies. Enter the innovative da...

7 Questions to Ask Before You Sign IT Support Companies in Sydney

Choosing an IT partner can feel like buying an insurance policy you hope you never need. The right choice keeps your team productive, your data safe, and your budget predictable. The wrong choice shows up as slow tickets, surprise bills, and risky sh...

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

The Times Features

NSW has a new fashion sector strategy – but a sustainable industry needs a federally legislated response

The New South Wales government recently announced the launch of the NSW Fashion Sector Strategy, 2025–28[1]. The strategy, developed in partnership with the Australian Fashion ...

From Garden to Gift: Why Roses Make the Perfect Present

Think back to the last time you gave or received flowers. Chances are, roses were part of the bunch, or maybe they were the whole bunch.   Roses tend to leave an impression. Even ...

Do I have insomnia? 5 reasons why you might not

Even a single night of sleep trouble can feel distressing and lonely. You toss and turn, stare at the ceiling, and wonder how you’ll cope tomorrow. No wonder many people star...

Wedding Photography Trends You Need to Know (Before You Regret Your Album)

Your wedding album should be a timeless keepsake, not something you cringe at years later. Trends may come and go, but choosing the right wedding photography approach ensures your ...

Can you say no to your doctor using an AI scribe?

Doctors’ offices were once private. But increasingly, artificial intelligence (AI) scribes (also known as digital scribes) are listening in. These tools can record and trans...

There’s a new vaccine for pneumococcal disease in Australia. Here’s what to know

The Australian government announced last week there’s a new vaccine[1] for pneumococcal disease on the National Immunisation Program for all children. This vaccine replaces pr...