The Times Australia
The Times World News

.

Marsupials and other mammals separately evolved flight many times, and we are finally learning how

  • Written by Charles Feigin, Postdoctoral Fellow in Genomics and Evolution, The University of Melbourne
Marsupials and other mammals separately evolved flight many times, and we are finally learning how

Shoot for the moon[1]. Even if you miss, you’ll land on the next tree. Many groups of mammals seem to have taken this evolutionary advice to heart. According to our newly published paper in Science Advances[2], unrelated animals may even have used the same blueprints for building their “wings”.

While birds are the undisputed champions of the sky, having mastered flight during the Jurassic[3], mammals have actually evolved flight more often than birds. In fact, as many as seven different groups of mammals living today have taken to the air independently of each other[4].

These evolutionary experiments happened in animals scattered all across the mammalian family tree – including flying squirrels, marsupial possums and the colugo (cousin of the primates). But they all have something in common. It’s a special skin structure between their limbs called a patagium, or flight membrane.

The fact these similar structures have arisen so many times (a process called convergent evolution[5]) hints that the genetic underpinnings of patagia might predate flight. Indeed, they could be shared by all mammals, even those living on the ground.

If this is true, studying patagia can help us to better understand the incredible adaptability of mammals. We might also discover previously unknown aspects of human genetics.

A cute grey and cream striped animal on a tree branch with distinctive skin folds visible on its side
Sugar gliders are one of several mammals that have independently evolved the ability to fly through the air. apiguide/Shutterstock

A deceptively simple membrane

Despite being seemingly simple skin structures, patagia contain several tissues, including hair, a rich array of touch-sensitive neurons[6], connective tissue and even thin sheets of muscle[7]. But in the earliest stages of formation, these membranes are dominated by the two main layers of the skin: the inner dermis and outer epidermis.

A pink baby animal looking much like an embryo with a red arrow pointing at a thin membrane it its armpit The patagium in sugar gliders (red arrow) forms after birth when the newborn, or joey, is in its marsupial mother’s pouch. Charles Feigin, Author provided

At first, they hardly differ from neighbouring skin. But at some point, the skin on the animal’s sides starts to rapidly change, or differentiate. The dermis undergoes a process called condensation, where cells bunch up and the tissue becomes very dense. Meanwhile, the epidermis thickens in a process called hyperplasia.

In some mammals, this differentiation happens when they are still an embryo in the uterus. Incredibly though, in our main model species – the marsupial sugar glider (Petaurus breviceps[8]) – this process begins after birth, while they are in the mother’s pouch. This provides us with an incredible window into patagium formation.

Starting with the sugar glider, we examined the behaviours of thousands of genes active during the early development of the patagium, to try and figure out how this chain of events is kicked off.

Read more: A rare discovery: we found the sugar glider is actually three species, but one is disappearing fast[9]

From gliders to bats

We discovered that levels of a gene called Wnt5a are strongly correlated with the onset of those early skin changes – condensation and hyperplasia. Through a series of experiments involving cultured skin tissues and genetically engineered laboratory mice, we showed that adding extra Wnt5a was all it took to drive both of these early hallmarks of patagium formation.

Interestingly, when we extended our work to bats, we found extremely similar patterns of Wnt5a activity in their developing lateral patagia to that in sugar gliders. This was surprising, since bats (placental mammals) last shared a common ancestor with the marsupial sugar glider around 160 million years ago.

Perhaps even more remarkably, we found a nearly identical pattern in the outer ear (or pinna) of lab mice. The pinna is a nearly universal trait among mammals, including innumerable species with no flying ancestry.

A dark bat with an upturned nose with its wings spread out
Seba’s short-tailed bat has a lateral patagium (connected to the flank of the body) activated by Wnt5a. Irineu Cunha/iNaturalist, CC BY-NC[10][11]

A molecular toolkit

Together, these results suggest something profound. Wnt5a’s role in ushering in the skin changes needed for a patagium likely evolved long before the first mammal ever took to the air.

Originally, the gene had nothing to do with flight, instead contributing to the development of seemingly unrelated traits. But because of shared ancestry, most living mammals today inherited this Wnt5a-driven program. When species like gliders and bats started on their separate journeys into the air, they did so with a common “molecular toolkit”.

Not only that, but this same toolkit is likely present in humans and working in ways we don’t fully understand yet.

There are definite limits to our recent work. First, we haven’t made a flying mouse. This may sound like a joke, but demonstrates we still don’t fully understand how a region of dense, thick skin becomes a thin and wide flight membrane. Many more genes with unknown roles are bound to be involved.

Second, while we’ve shown a cause-and-effect relationship between Wnt5a and patagium skin differentiation, we don’t know precisely how Wnt5a does it. Moving forward, we hope to fill in these gaps by broadening the horizons of our cross-species comparisons and by conducting more in-depth molecular studies on patagium formation in sugar gliders.

For now though, our study presents an exciting new view of flight in mammals. We may not be the strongest fliers, but trying is in our DNA.

Read more: Mysterious poles make road crossing easier for high flying mammals[12]

Read more https://theconversation.com/marsupials-and-other-mammals-separately-evolved-flight-many-times-and-we-are-finally-learning-how-202152

Times Magazine

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

Data Management Isn't Just About Tech—Here’s Why It’s a Human Problem Too

Photo by Kevin Kuby Manuel O. Diaz Jr.We live in a world drowning in data. Every click, swipe, medical scan, and financial transaction generates information, so much that managing it all has become one of the biggest challenges of our digital age. Bu...

Headless CMS in Digital Twins and 3D Product Experiences

Image by freepik As the metaverse becomes more advanced and accessible, it's clear that multiple sectors will use digital twins and 3D product experiences to visualize, connect, and streamline efforts better. A digital twin is a virtual replica of ...

The Times Features

What to Expect During a Professional Termite Inspection

Keeping a home safe from termites isn't just about peace of mind—it’s a vital investment in the structure of your property. A professional termite inspection is your first line o...

Booty and the Beasts - The Podcast

Cult TV Show Back with Bite as a Riotous New Podcast  The show that scandalised, shocked and entertained audiences across the country, ‘Beauty and the Beast’, has returned in ...

A Guide to Determining the Right Time for a Switchboard Replacement

At the centre of every property’s electrical system is the switchboard – a component that doesn’t get much attention until problems arise. This essential unit directs electrici...

Après Skrew: Peanut Butter Whiskey Turns Australia’s Winter Parties Upside Down

This August, winter in Australia is about to get a lot nuttier. Skrewball Whiskey, the cult U.S. peanut butter whiskey that’s taken the world by storm, is bringing its bold brand o...

450 people queue for first taste of Pappa Flock’s crispy chicken as first restaurant opens in Queensland

Queenslanders turned out in flocks for the opening of Pappa Flock's first Queensland restaurant, with 450 people lining up to get their hands on the TikTok famous crispy crunchy ch...

How to Choose a Cosmetic Clinic That Aligns With Your Aesthetic Goals

Clinics that align with your goals prioritise subtlety, safety, and client input Strong results come from experience, not trends or treatment bundles A proper consultation fe...