The Times Australia
The Times Australia
.

How we tricked AI chatbots into creating misinformation, despite ‘safety’ measures

  • Written by Lin Tian, Research Fellow, Data Science Institute, University of Technology Sydney

When you ask ChatGPT or other AI assistants to help create misinformation, they typically refuse, with responses like “I cannot assist with creating false information.” But our tests show these safety measures are surprisingly shallow – often just a few words deep – making them alarmingly easy to circumvent.

We have been investigating how AI language models can be manipulated to generate coordinated disinformation campaigns across social media platforms. What we found should concern anyone worried about the integrity of online information.

The shallow safety problem

We were inspired by a recent study[1] from researchers at Princeton and Google. They showed current AI safety measures primarily work by controlling just the first few words of a response. If a model starts with “I cannot” or “I apologise”, it typically continues refusing throughout its answer.

Our experiments – not yet published in a peer-reviewed journal – confirmed this vulnerability. When we directly asked a commercial language model to create disinformation about Australian political parties, it correctly refused.

However, we also tried the exact same request as a “simulation” where the AI was told it was a “helpful social media marketer” developing “general strategy and best practices”. In this case, it enthusiastically complied.

The AI produced a comprehensive disinformation campaign falsely portraying Labor’s superannuation policies as a “quasi inheritance tax”. It came complete with platform-specific posts, hashtag strategies, and visual content suggestions designed to manipulate public opinion.

The main problem is that the model can generate harmful content but isn’t truly aware of what is harmful, or why it should refuse. Large language models are simply trained to start responses with “I cannot” when certain topics are requested.

Think of a security guard checking minimal identification when allowing customers into a nightclub. If they don’t understand who and why someone is not allowed inside, then a simple disguise would be enough to let anyone get in.

Real-world implications

To demonstrate this vulnerability, we tested several popular AI models with prompts designed to generate disinformation.

The results were troubling: models that steadfastly refused direct requests for harmful content readily complied when the request was wrapped in seemingly innocent framing scenarios. This practice is called “model jailbreaking[2]”.

The ease with which these safety measures can be bypassed has serious implications. Bad actors could use these techniques to generate large-scale disinformation campaigns at minimal cost. They could create platform-specific content that appears authentic to users, overwhelm fact-checkers with sheer volume, and target specific communities with tailored false narratives.

The process can largely be automated. What once required significant human resources and coordination could now be accomplished by a single individual with basic prompting skills.

The technical details

The American study[3] found AI safety alignment typically affects only the first 3–7 words of a response. (Technically this is 5–10 tokens – the chunks AI models break text into for processing.)

This “shallow safety alignment” occurs because training data rarely includes examples of models refusing after starting to comply. It is easier to control these initial tokens than to maintain safety throughout entire responses.

Moving toward deeper safety

The US researchers propose several solutions, including training models with “safety recovery examples”. These would teach models to stop and refuse even after beginning to produce harmful content.

They also suggest constraining how much the AI can deviate from safe responses during fine-tuning for specific tasks. However, these are just first steps.

As AI systems become more powerful, we will need robust, multi-layered safety measures operating throughout response generation. Regular testing for new techniques to bypass safety measures is essential.

Also essential is transparency from AI companies about safety weaknesses. We also need public awareness that current safety measures are far from foolproof.

AI developers are actively working on solutions such as constitutional AI training. This process aims to instil models with deeper principles about harm, rather than just surface-level refusal patterns.

However, implementing these fixes requires significant computational resources and model retraining. Any comprehensive solutions will take time to deploy across the AI ecosystem.

The bigger picture

The shallow nature of current AI safeguards isn’t just a technical curiosity. It’s a vulnerability that could reshape how misinformation spreads online.

AI tools are spreading through into our information ecosystem, from news generation to social media content creation. We must ensure their safety measures are more than just skin deep.

The growing body of research on this issue also highlights a broader challenge in AI development. There is a big gap between what models appear to be capable of and what they actually understand.

While these systems can produce remarkably human-like text, they lack contextual understanding and moral reasoning. These would allow them to consistently identify and refuse harmful requests regardless of how they’re phrased.

For now, users and organisations deploying AI systems should be aware that simple prompt engineering can potentially bypass many current safety measures. This knowledge should inform policies around AI use and underscore the need for human oversight in sensitive applications.

As the technology continues to evolve, the race between safety measures and methods to circumvent them will accelerate. Robust, deep safety measures are important not just for technicians – but for all of society.

References

  1. ^ study (proceedings.iclr.cc)
  2. ^ model jailbreaking (www.microsoft.com)
  3. ^ American study (proceedings.iclr.cc)

Read more https://theconversation.com/how-we-tricked-ai-chatbots-into-creating-misinformation-despite-safety-measures-264184

How childcare in aged care can help young and old

An experimental aged-care model in South Australia, where purpose-built independent retirement living apartm...

Times Magazine

Choosing the Right Legal Aid Lawyer in Sutherland Shire: Key Considerations

Legal aid services play an essential role in ensuring access to justice for all. For people in the Sutherland Shire who may not have the financial means to pay for private legal assistance, legal aid ensures that everyone has access to representa...

Watercolor vs. Oil vs. Digital: Which Medium Fits Your Pet's Personality?

When it comes to immortalizing your pet’s unique personality in art, choosing the right medium is essential. Each artistic medium, whether watercolor, oil, or digital, has distinct qualities that can bring out the spirit of your furry friend in dif...

DIY Is In: How Aussie Parents Are Redefining Birthday Parties

When planning his daughter’s birthday, Rich opted for a DIY approach, inspired by her love for drawing maps and giving clues. Their weekend tradition of hiding treats at home sparked the idea, and with a pirate ship playground already chosen as t...

When Touchscreens Turn Temperamental: What to Do Before You Panic

When your touchscreen starts acting up, ignoring taps, registering phantom touches, or freezing entirely, it can feel like your entire setup is falling apart. Before you rush to replace the device, it’s worth taking a deep breath and exploring what c...

Why Social Media Marketing Matters for Businesses in Australia

Today social media is a big part of daily life. All over Australia people use Facebook, Instagram, TikTok , LinkedIn and Twitter to stay connected, share updates and find new ideas. For businesses this means a great chance to reach new customers and...

Building an AI-First Culture in Your Company

AI isn't just something to think about anymore - it's becoming part of how we live and work, whether we like it or not. At the office, it definitely helps us move faster. But here's the thing: just using tools like ChatGPT or plugging AI into your wo...

The Times Features

From Farms to Festivals: How Regional NSW Is Repurposing Shipping Containers

Regional NSW communities are repurposing containers for farms, tourism, and events Farmers and small businesses use them as cost-effective, flexible infrastructure Festivals ...

What a Mobile Speech Pathologist Really Does for Late Talkers

As a parent, it’s natural to keep a close eye on your child’s development. When your toddler isn’t using as many words as their peers, the internet can feel like a rabbit hole ...

Benefits of Tree Pruning for a Thriving Australian Garden

Tree pruning is an essential aspect of garden maintenance that often doesn't get the attention it deserves. It's a practice that involves the selective removal of certain parts...

What is psychosocial therapy? And why is the government thinking about adding it to Medicare for kids?

The government is considering new, bulk-billed health checks for three-year-olds, to pick up developmental concerns and refer kids that might need additional support. The de...

Detect Hidden Water Leaks Fast: Don’t Ignore Hot Water System Leaks

Detecting water leaks early is crucial for preventing extensive damage to your home. Among the various parts of a home’s plumbing system, hot water systems are particularly suscept...

Why do hamstring injuries happen so often and how can they be prevented?

In a recent clash against the Melbourne Storm, the Brisbane Broncos endured a nightmare rarely seen in professional sport — three players tore their hamstrings[1] in a single g...