The Times Australia
Google AI
The Times World News

.

we studied distant suns in the most precise astronomical test of electromagnetism yet

  • Written by Michael Murphy, Professor of Astrophysics, Swinburne University of Technology
we studied distant suns in the most precise astronomical test of electromagnetism yet

There’s an awkward, irksome problem with our understanding of nature’s laws which physicists have been trying to explain for decades. It’s about electromagnetism, the law of how atoms and light interact, which explains everything from why you don’t fall through the floor to why the sky is blue.

Our theory of electromagnetism is arguably the best physical theory humans have ever made – but it has no answer for why electromagnetism is as strong as it is. Only experiments can tell you electromagnetism’s strength, which is measured by a number called α (aka alpha, or the fine-structure constant[1]).

The American physicist Richard Feynman, who helped come up with the theory, called this[2] “one of the greatest damn mysteries of physics” and urged physicists to “put this number up on their wall and worry about it”.

In research just published in Science[3], we decided to test whether α is the same in different places within our galaxy by studying stars that are almost identical twins of our Sun. If α is different in different places, it might help us find the ultimate theory, not just of electromagnetism, but of all nature’s laws together – the “theory of everything”.

We want to break our favourite theory

Physicists really want one thing: a situation where our current understanding of physics breaks down. New physics. A signal that cannot be explained by current theories. A sign-post for the theory of everything.

To find it, they might wait deep underground in a gold mine[4] for particles of dark matter to collide with a special crystal. Or they might carefully tend the world’s best atomic clocks[5] for years to see if they tell slightly different time. Or smash protons together at (nearly) the speed of light in the 27-km ring of the Large Hadron Collider[6].

The trouble is, it’s hard to know where to look. Our current theories can’t guide us.

Of course, we look in laboratories on Earth, where it’s easiest to search thoroughly and most precisely. But that’s a bit like the drunk only searching for his lost keys under a lamp-post[7] when, actually, he might have lost them on the other side of the road, somewhere in a dark corner.

A detailed rainbow spectrum with many small black lines.
The Sun’s rainbow: sunlight is here spread into separate rows, each covering just a small range of colours, to reveal the many dark absorption lines from atoms in the Sun’s atmosphere. N.A. Sharp / KPNO / NOIRLab / NSO / NSF / AURA, CC BY[8][9]

Stars are terrible, but sometimes terribly similar

We decided to look beyond Earth, beyond our Solar System, to see if stars which are nearly identical twins of our Sun produce the same rainbow of colours. Atoms in the atmospheres of stars absorb some of the light struggling outwards from the nuclear furnaces in their cores.

Only certain colours are absorbed, leaving dark lines in the rainbow. Those absorbed colours are determined by α – so measuring the dark lines very carefully also lets us measure α.

A close-up image showing the Sun's bubbling atmosphere. Hotter and cooler gas bubbling through the turbulent atmospheres of stars make it hard to compare absorption lines in stars with those seen in laboratory experiments. NSO / AURA / NSF, CC BY[10][11]

The problem is, the atmospheres of stars are moving – boiling, spinning, looping, burping – and this shifts the lines. The shifts spoil any comparison with the same lines in laboratories on Earth, and hence any chance of measuring α. Stars, it seems, are terrible places to test electromagnetism.

But we wondered: if you find stars that are very similar – twins of each other – maybe their dark, absorbed colours are similar as well. So instead of comparing stars to laboratories on Earth, we compared twins of our Sun to each other.

A new test with solar twins

Our team of student, postdoctoral and senior researchers, at Swinburne University of Technology and the University of New South Wales, measured the spacing between pairs of absorption lines in our Sun and 16 “solar twins” – stars almost indistinguishable from our Sun.

The rainbows from these stars were observed on the 3.6-metre European Southern Observatory (ESO) telescope[12] in Chile. While not the largest telescope in the world, the light it collects is fed into probably the best-controlled, best-understood spectrograph: HARPS[13]. This separates the light into its colours, revealing the detailed pattern of dark lines.

Read more: Explainer: seeing the universe through spectroscopic eyes[14]

HARPS spends much of its time observing Sun-like stars to search for planets. Handily, this provided a treasure trove of exactly the data we needed.

A long-exposure photo showing stars tracing out circles in the night sky behind the silhouette of a domed telescope on a hillside. The ESO 3.6-metre telescope in Chile spends much of its time observing Sun-like stars to search for planets using its extremely precise spectrograph, HARPS. Iztok Bončina / ESO, CC BY[15][16]

From these exquisite spectra, we have shown that α was the same in the 17 solar twins to an astonishing precision: just 50 parts per billion. That’s like comparing your height to the circumference of Earth. It’s the most precise astronomical test of α ever performed.

Unfortunately, our new measurements didn’t break our favourite theory. But the stars we’ve studied are all relatively nearby, only up to 160 light years away.

What’s next?

We’ve recently identified new solar twins much further away, about half way to the centre of our Milky Way galaxy.

In this region, there should be a much higher concentration of dark matter – an elusive substance astronomers believe lurks throughout the galaxy and beyond. Like α, we know precious little about dark matter, and some theoretical physicists[17] suggest the inner parts of our galaxy might be just the dark corner we should search for connections between these two “damn mysteries of physics”.

If we can observe these much more distant suns with the largest optical telescopes, maybe we’ll find the keys to the universe.

Read more: Why do astronomers believe in dark matter?[18]

References

  1. ^ the fine-structure constant (en.wikipedia.org)
  2. ^ called this (www.nature.com)
  3. ^ research just published in Science (doi.org)
  4. ^ deep underground in a gold mine (www.supl.org.au)
  5. ^ carefully tend the world’s best atomic clocks (www.nature.com)
  6. ^ Large Hadron Collider (www.home.cern)
  7. ^ drunk only searching for his lost keys under a lamp-post (en.wikipedia.org)
  8. ^ N.A. Sharp / KPNO / NOIRLab / NSO / NSF / AURA (noirlab.edu)
  9. ^ CC BY (creativecommons.org)
  10. ^ NSO / AURA / NSF (nso.edu)
  11. ^ CC BY (creativecommons.org)
  12. ^ 3.6-metre European Southern Observatory (ESO) telescope (www.eso.org)
  13. ^ HARPS (www.eso.org)
  14. ^ Explainer: seeing the universe through spectroscopic eyes (theconversation.com)
  15. ^ Iztok Bončina / ESO (www.eso.org)
  16. ^ CC BY (creativecommons.org)
  17. ^ some theoretical physicists (doi.org)
  18. ^ Why do astronomers believe in dark matter? (theconversation.com)

Read more https://theconversation.com/one-of-the-greatest-damn-mysteries-of-physics-we-studied-distant-suns-in-the-most-precise-astronomical-test-of-electromagnetism-yet-194062

Times Magazine

With Nvidia’s second-best AI chips headed for China, the US shifts priorities from security to trade

This week, US President Donald Trump approved previously banned exports[1] of Nvidia’s powerful ...

Navman MiVue™ True 4K PRO Surround honest review

If you drive a car, you should have a dashcam. Need convincing? All I ask that you do is search fo...

Australia’s supercomputers are falling behind – and it’s hurting our ability to adapt to climate change

As Earth continues to warm, Australia faces some important decisions. For example, where shou...

Australia’s electric vehicle surge — EVs and hybrids hit record levels

Australians are increasingly embracing electric and hybrid cars, with 2025 shaping up as the str...

Tim Ayres on the AI rollout’s looming ‘bumps and glitches’

The federal government released its National AI Strategy[1] this week, confirming it has dropped...

Seven in Ten Australian Workers Say Employers Are Failing to Prepare Them for AI Future

As artificial intelligence (AI) accelerates across industries, a growing number of Australian work...

The Times Features

Brand Mentions are the new online content marketing sensation

In the dynamic world of digital marketing, the currency is attention, and the ultimate signal of t...

How Brand Mentions Have Become an Effective Online Marketing Option

For years, digital marketing revolved around a simple formula: pay for ads, drive clicks, measur...

Macquarie Capital Investment Propels Brennan's Next Phase of Growth and Sovereign Tech Leadership

Brennan, a leading Australian systems integrator, has secured a strategic investment from Macquari...

Will the ‘Scandinavian sleep method’ really help me sleep?

It begins with two people, one blanket, and two very different ideas of what’s a comfortable sle...

Australia’s Cost-of-Living Squeeze: Why Even “Doing Everything Right” No Longer Feels Enough

For decades, Australians were told there was a simple formula for financial security: get an edu...

A Thoughtful Touch: Creating Custom Wrapping Paper with Adobe Firefly

Print it. Wrap it. Gift it. The holidays are full of colour, warmth and little moments worth celebr...

Will the Australian dollar keep rising in 2026? 3 factors to watch in the new year

After several years of steadily declining, the Australian dollar staged a meaningful recovery in...

The Daily Concerns for People Living in Hobart

Hobart is often portrayed as a lifestyle haven — a harbour city framed by Mount Wellington, rich...

Planning your next holiday? Here’s how to spot and avoid greenwashing

More of us than ever are trying to make environmentally responsible travel choices. Sustainable ...